EVALUATING PERFORMANCE OF CONCRETE OVERLAYS FOR PAVEMENT REHABILITATION

November 2020 Final Report

Project number TR202003 MoDOT Research Report number cmr 20-012

PREPARED BY:

Max Grogg

Arturo Espinoza-Luque

Kurt Smith

Monty Wade

Julie Vandenbossche

PREPARED FOR:

Missouri Department of Transportation

Construction and Materials Division, Research Section

			Tech	nical Report Docum	entation Page	
1. Report No.	2. Gover	nment Accession No.	3. Re	ecipient's Catalog No.		
cmr 20-012			5 Pc	port Data		
Evaluating Performance of Concrete Overl	ement Rehabilitation	5. Ke				
		Deto	ber 2020 ished: Nov. 2020			
			6 Do	rforming Organization	Code	
	0. Fe	chorning Organization	Code			
			8. Pe	erforming Organization	Report No.	
7. Author(s)	~					
Max Grogg, Arturo Espinoza-Luque, Kurt	Smith, Mo	nty Wade, and				
9 Performing Organization Name and Ac	dross		10 V	Vork Unit No. (TRAIS)		
Applied Pavement Technology Inc	uless		10. 1			
115 West Main Street, Suite 400						
Urbana, IL 61801			11. Contract or Grant No.			
			WIOL	01 project # 1K20200.	3	
			13. Type of Report and Period Covered			
12. Sponsoring Agency Name and Addre	ss		Final	l Report	20	
Missouri Department of Transportation (SI	PR-B)		Augi	ist 2019 – Decentitier 20	120	
Construction and Materials Division			14 S	ponsoring Agency Co	de	
P.O. Box 270 Lefferson City, MO 65102			14.0	policoning Agency cos	40	
15 Supplementary Notes						
Conducted in cooperation with the U.S. De	nartment o	f Transportation Federal	Highwa	w Administration MoD	OT research	
reports are available in the Innovation Libr	arv at https	://www.modot.org/researc	ch-publ	ications.		
16. Abstract	·	č				
The Missouri Department of Transportation (MoDOT) has a long history of concrete overlay use dating back to at least the 1930s, and over the last 20 years has constructed over 40 concrete overlay projects in a range of applications. The goal of this study was to review and evaluate the performance of bonded and unbonded overlays constructed in Missouri as a first step in documenting their performance and working to improve MoDOT's overall concrete overlay selection, design, and						
A database of important design, construction, and performance data for 41 selected concrete overlay projects built by the Missouri DOT from 1999 to 2019 was compiled. Three types of concrete overlays were included in this project:						
1. Unbonded overlays (UBOLs): concrete overlay with thicknesses of 8 in or greater and conventional joint spacing placed on and separated from an existing concrete or asphalt payment. A total of 26 UBOL projects were included						
 Big block overlays (BBOLs): an unbon by 6 ft) and placed on an existing concr 	ded concret ete or asph	te overlay with typical 5-i alt payement. A total of 9	n thicki BBOL	ness and short panel size	e (typically 6 ft	
3. Bonded overlays (BOLs); a thin concrete overlay of typical 4-in thickness and 4 ft by 4 ft panel size bonded to the						
underlying asphalt or concrete pavement. A total of 6 BOL projects were included.						
Time-series smoothness data were available for all projects since the time of their construction while key distress data (cracking, spalling, faulting, patching) were available from 2018. These data were examined for all overlay types and general performance trends and observations were made to identify factors leading to improved performance. Based on the findings,						
general recommendations to improve the performance of concrete overlays in Missouri were developed.						
17. Key Words		18. Distribution Statem	nent			
Concrete, Concrete overlays, Unbonded ov Bonded overlays, Performance, Cracking, Roughness, PWL, Design features	erlays,	No restrictions. This do Technical Information S	cument Service,	is available through the Springfield, VA 22161	e National	
19. Security Classif. (of this report)	20. Secu	rity Classif. (of this page	e)	21. No of Pages 22	2. Price	
Unclassified. Unclassified.				189		
Form DOT F 1700.7 (8-72)			Repro	duction of completed	page authorized	

EVALUATING PERFORMANCE OF CONCRETE OVERLAYS FOR PAVEMENT REHABILITATION

Project Number: TR202003

Final Report

Prepared By: Applied Pavement Technology, Inc. 115 West Main Street, Suite 400 Urbana, IL 61801 217-398-3977 www.appliedpavement.com/

Prepared For: Missouri Department of Transportation 105 West Capitol Avenue Jefferson City, MO 65102 888-275-6636 www.modot.org/

October 2020

COPYRIGHT

Authors herein are responsible for the authenticity of their materials and for obtaining written permissions from publishers or individuals who own the copyright to any previously published or copyrighted material used herein.

DISCLAIMER

The opinions, findings, and conclusions expressed in this document are those of the investigators. They are not necessarily those of the Missouri Department of Transportation, the U.S. Department of Transportation, or the Federal Highway Administration. This information does not constitute a standard or specification.

ACKNOWLEDGMENTS

The authors would like to acknowledge the Missouri Department of Transportation for providing financial support for the project and for providing project data and access to files and video records to complete the study. Special recognition goes to Jennifer Harper, Brent Schulte, John Donahue, Jay Whaley, Jonathan Varner, Jason Blomberg, and Ryan Martin for their invaluable guidance and support throughout the conduct of this project.

EXECUTIVE SUMMARY

The Missouri Department of Transportation (MoDOT) has a long history of concrete overlay use dating back to at least the 1930s, and over the last 20 years has constructed over 40 concrete overlay projects in a range of applications. The goal of this study was to review and evaluate the performance of bonded and unbonded overlays constructed in Missouri as a first step in documenting their performance and working to improve MoDOT's overall concrete overlay selection, design, and construction procedures. To accomplish that goal, the following objectives were established:

- Inventory the routes and locations of the concrete overlays as detailed in the plans or from virtual site visits via review of ARAN videos and data. The completed inventory should include the travelway ID, direction, route, county, log limits of overlay section, lane number, type of interlayer (if applicable), and other identifying information. MoDOT furnished all of the relevant inventory data.
- Document the thickness of each concrete overlay project, along with the air content and compressive strength, by pulling information from AASHTOWare Project SiteManager QC/QA data or other Construction and Materials records, as available.
- Tabulate the performance histories of the concrete overlays using data from the MoDOT Transportation Management System (TMS) database.
- Review the latest year of video from ARAN and document visible cracking along with patching and maintenance performed on the pavement.
- Estimate the current rehabilitation and maintenance requirements for each project.
- Identify any correlations between the condition/distress of the pavement and key project construction/materials data, including the type of interlayer (where applicable).
- Identify whether coring and construction data correspond with information shown on the construction plans.

Three types of concrete overlays commonly constructed by MoDOT were included in the inventory of overlays for this project.

- 1. Unbonded overlays (UBOL) are used to restore or increase the structural capacity and can be used on pavements that are moderately to severely deteriorated (Harrington and Fick 2014). Unbonded overlays typically have a bond breaker or interlayer material placed between the overlay and the existing pavement to provide for independent behavior. The concrete overlay essentially performs as a new pavement and is designed as such. MoDOT's UBOL projects are typically 8 in thick and include either a hot-mix asphalt (HMA) or geotextile interlayer, with a panel size of 15 ft long and 12 to 14 ft wide. Underlying pavements include HMA, concrete, and composite (asphalt over concrete) pavements. A total of 26 UBOL projects were included in the study, of which 3 were undoweled and the remaining 23 featured 1.25-in diameter dowel bars.
- 2. Big block overlays (BBOL) are also considered to be an unbonded overlay but with a typical 5 in thickness and a panel size of 6 ft by 6 ft. Interlayers used on the projects in

the inventory include HMA, geotextile, or none. The underlying pavements include HMA, concrete, and composite (asphalt over concrete) pavements. A total of 9 BBOL projects were included in the study and none of these were doweled.

3. Bonded overlays (BOL) are used to add structural capacity and eliminate surface distress on existing pavements that are in fair to good structural condition (Harrington and Fick 2014). Bonded overlays are thinner than the unbonded variety and rely on a strong bond with the underlying pavement. Proper surface preparation is key to the design and performance of BOL pavements. Typical BOL pavements in this project are 4 in thick with a 4 ft by 4 ft panel size. A total of 6 BOL projects were included in the study. All these BOLs were bonded concrete over asphalt (BCOA) with fibrillated polypropylene fibers and none contained dowel bars.

A database was created in an Excel workbook that included key design, materials, construction, and performance data for each overlay project; characteristics and sources of that data are provided below:

- Design information for each of the overlay projects was extracted from project plans.
- Construction records on portland cement concrete (PCC) strength, air content, and slab thickness were extracted from MoDOT's SiteManager database. No construction records were available for the BOL projects. Percent-Within-Limit (PWL) calculations were made for strength, air content, and thickness for each of the projects where such data were available.
- Faulting and roughness data (expressed in terms of the International Roughness Index, IRI) were extracted from MoDOT's TMS database. The IRI data were averaged over 0.1mi and project length and time series graphs were prepared. Project averages were computed for faulting. The IRI data were generally available from the time that the overlay was constructed through 2018, while faulting data were available only for 2017 and 2018.
- Traffic data from plans and the ARAN public viewer (MoDOT 2019a) were used to compute estimated equivalent single-axle load (ESAL) repetitions that each concrete overlay had sustained to account for traffic effects across projects.
- ARAN videos were reviewed and pavement distress summaries, following the protocols used under the FHWA LTPP program (Miller and Bellinger 2014), were developed. Overall, most of the overlays included in this research project are performing well, especially when considering the excellent ride quality of the UBOL projects. The BBOL and BOL projects exhibited increased IRI values and cracking and patching compared to UBOL projects.

Although the presence of several confounding variables (e.g., slab thickness, interlayer type, slab width, shoulder type, and traffic loadings) often hindered performance comparisons, some of the key observations from a review of the performance data are shown in table ES-1.

Overlay Type	Performance Observations	Construction QA/QC Data	Effect of Design Features		
UBOL (0.9 to 26.6 million ESALs)	 Observed distresses: transverse and longitudinal cracking Percent cracked and patched slabs range = 0 to 32% Predominant distress: longitudinal cracking, occurring predominantly in the middle or right wheelpath (very little transverse cracking) IRI values low and stable over time. 2018 mean IRI = 64 in/mi 2018 range = 36 to 114 in/mi Negligible faulting 	 For slab thickness, PWL values below 90% generally show higher levels of distress For concrete strength, PWL values did not show a clear relationship to performance. Strength values were generally above 90%, indicating that adequate strength is not an issue for concrete overlay projects. For concrete air content, PWL values did not show a clear relationship to performance. 	 Slab thickness: UBOL projects with design thickness of 8 in exhibit higher and more variable cracking. An as-constructed thickness minus one standard deviation value greater than 8.6 in results in less cracking. Slab Width/Shoulder: UBOL projects with 14-ft wide slabs and HMA shoulders exhibited higher levels of longitudinal cracking UBOL projects with PCC shoulders exhibited less longitudinal cracking than those with HMA shoulders Interlayer/Underlying Pavement: UBOL projects with geotextile interlayers exhibit less cracking than those using an existing or new HMA interlayer. 		
BBOL (0.2 to 2.8 million ESALs)	 Observed distresses: transverse, longitudinal cracking, corner breaks, and shattered slabs. Percent cracked and patched slabs range = 0 to 6% (not including project 35N and 35S, modified UBOL) Predominant distress: longitudinal cracking, most commonly occurring in the right panel of the slab. IRI values relatively high. 2018 mean IRI = 131 in/mi 2018 IRI range = 43 to 284 in/mi Negligible faulting 	 For slab thickness, PWL values below 90% generally show higher levels of distress For concrete strength, PWL values did not show a clear relationship to performance. Strength values were generally above 90%, indicating that adequate strength is not an issue for concrete overlay projects. For concrete air content, PWL values did not show a clear relationship to performance. 	 Slab thickness: BBOL projects with 6-in design slab thickness exhibited less cracking than the 5 and 5.5-in thick designs. A minimum as-constructed thickness of 5.5 in resulted in less cracking. Slab Geometry: No conclusions on slab geometry (all designs included 6-ft by 6-ft panels). Shoulder Type: No definitive conclusions on effect of shoulder type. Underlying Pavement. No definitive conclusions on effect of underlying pavement type. 		
BOL (0.4 to 5.8 million ESALs)	 Observed distresses: transverse, longitudinal, and corner cracking Percent cracked and patched slabs range = 0 to 25% Predominant distress: longitudinal and corner cracking, occurring predominantly in the right panel Significant cracking on 3 of 6 projects despite lower traffic IRI values high and variable. 2018 mean IRI = 263 in/mi 2018 IRI range = 118 to 443 in/mi Negligible faulting 	• QA/QC results were not available for the BOL projects.	 Slab Thickness: No conclusions on slab thickness (all designs were 4 in thick). Slab Geometry: No conclusions on slab geometry (all designs included 4-ft by 4-ft panels). Shoulder Type: No definitive conclusions (only 6 projects. 		

Table ES-1. MoDOT concrete overlay summary.

Based on the observed performance trends, the following items are recommended to improve concrete overlay performance in Missouri. UBOL projects provided more complete information, and there was more diversity in some of the design parameters that allowed for more recommendations. BOL projects had the most limited data.

- MoDOT should revise UBOL and BBOL design thickness procedures to be site specific, building on their mechanistic design procedure for pavements.
- MoDOT should revise UBOL and BBOL thickness construction quality control practices to better control minimum thickness due to the sensitivity of concrete overlays to as-constructed thickness.
- MoDOT should continue the use of geotextiles interlayers as they appear to provide better performance for UBOL projects.

The following research to improve concrete overlay performance is recommended:

- Forensics—MoDOT should consider additional field and records forensics to:
 - Determine the condition of the underlying pavement at the time of overlay.
 - Investigate good and poor performing concrete overlays to determine key design or construction parameters.
- Additional engineering for BOL projects to improve ride and underlying pavement and base support.
- Additional research on the failure mode for BOL projects. The research could determine the cause of cracking and patching that was predominantly located in the right panel for the projects reviewed. Also, could additional or different fibers be used to mitigate the cracking potential of this type of overlay.
- Additional research to optimize the design and selection of geotextiles for interlayers. The research could review geotextile selection and application to improve the performance of concrete overlays.

TABLE OF CONTENTS

CHAPTER 1. INTRODUCTION	1
1.1 Background	1
1.2 Problem Statement	
1.3 Research Methodology	1
1.3.1 Task 1: Project Management	
1.3.2 Task 2: Data Collection of Existing Concrete Overlays	
1.3.3 Task 3: Create Project Outline for Evaluation	
1.3.4 Task 4: Conduct Analysis of Field Data	
1.3.5 Task 5: Develop Interim Report and Research Summary	
1.3.6 Task 6: Delivery of Final Report and Research Summary	4
1.4 Report Overview	
CHAPTER 2. PROJECT DATA	
2.1 Introduction	
2.2 Inventory of Overlays	5
2.3 Design Information	10
2.3.1 Thickness	12
2.3.2 Slab Geometry	14
2.3.3 Interlayer	14
2.3.4 Underlying Pavement and Base	15
2.3.5 Shoulder Type	15
2.3.6 Traffic	16
2.4 Construction Quality Assurance Data	16
2.4.1 Data Completeness	17
2.4.2 Thickness—By Overlay Type	17
2.4.3 Strength—By Overlay Type	19
2.4.4 Air Content—By Overlay Type	19
2.5 Transportation Management System (TMS) Performance History Data	21
2.5.1 IRI	21
2.5.2 Faulting	26
2.6 ARAN Video Distress Data	27
2.6.1 Methodology	
2.6.2 Issues and Challenges	30
2.6.3 UBOL—Slab Condition Summary	32

2.6.4 BBOL—Slab Condition Summary	34
2.6.5 BOL—Slab Condition Summary	34
2.7 Summary	.35
CHAPTER 3. DATA ANALYSIS AND DISCUSSION	. 37
3.1 Introduction	37
3.2 Estimated Equivalent Single Axle Loading	. 37
3.3 Construction Quality Assurance	. 38
3.3.1 PWL Results	38
3.3.2 PWL Discussion	38
3.4 Performance Correlations	. 44
3.4.1 UBOL	44
3.4.2 BBOL	56
3.4.3 BOL	65
3.5 Series IRI Data	. 70
3.5.1 Time Series IRI Data	70
3.5.2 IRI Data Along Projects	70
3.6 Current Repair Needs	. 73
3.6.1 Patching	.74
3.6.2 Rehabilitation	.74
CHAPTER 4. IMPLEMENTATION RECOMMENDATIONS AND FUTURE	
RESEARCH	. 79
4.1 Introduction	. 79
4.2 Improve Concrete Overlay Performance in Missouri	. 79
4.2.1 MoDOT Should Revise UBOL and BBOL Design Thickness Procedures to be Site Specific.	.79
4.2.2 MoDOT Should Revise UBOL and BBOL Thickness Construction Quality Control Practices to Better Control Minimum Thickness	. 79
4.2.3 MoDOT Should Continue the Use of Geotextiles Interlayers as They Appear to Provide Better Performance for UBOL Projects.	. 80
4.3 Recommendations for Additional Research	80
4.3.1 Forensic Investigations.	80
4.3.2 Evaluate Additional Engineering for BOL Projects to Ensure Underlying Pavement and Base Support and Profile	. 80
4.3.3 Additional Research on the Failure Mode for BOL Projects	81
4.3.4 Additional Research to Optimize the Design and Selection of Geotextiles for Interlayers.	. 81

CHAPTER 5. SUMMARY AND CONCLUSIONS	
REFERENCES	
APPENDIX A-MODOT CONCRETE OVERLAY INVENTORY	A-1
APPENDIX B—DESIGN INFORMATION	B-1
APPENDIX C—CONSTRUCTION QUALITY ASSURANCE DATA	C-1
APPENDIX D—TRANSPORTATION MANAGEMENT SYSTEM (TMS) PERFORMANCE HISTORY DATA	D-1
APPENDIX E-ESAL CALCULATIONS	E-1
APPENDIX F—IRI TIME SERIES GRAPHS	F-1
APPENDIX G—CURRENT REPAIR NEEDS	G-1
APPENDIX H—DATA DICTIONARY	H-1

LIST OF FIGURES

Figure 2-1. Location map of project overlays)
Figure 2-2. Longitudinal and transverse cracking zones for UBOL slabs and BBOL panels not	
including joint zones)
Figure 2-3. Panel location for BBOL and BOL projects	
Figure 2-4. ARAN display of forward camera (left panel), laser measured downward distance	
(center panel), and laser measure downward intensity (right panel) for project 12E,	
I-44 in Laclede County with no visible distress	
Figure 2-5. ARAN display of forward camera (left panel), laser measured downward distance	
(center panel), and laser measure downward intensity (right panel) for project 12E, I-	
44 in Laclede County with corner patches and longitudinal cracks)
Figure 3-1. Comparison of concrete overlay thickness PWL to cracked and patched slabs for	
UBOL projects (* cracked slabs includes shattered slabs, longitudinal, transverse,	
diagonal, and corner cracking)	L
Figure 3-2. Comparison of concrete overlay thickness PWL to cracked and patched slabs for	
BBOL projects (* cracked slabs includes shattered slabs, longitudinal, transverse,	
diagonal, and corner cracking))
Figure 3-3. Comparison of PCC strength PWL to cracked and patched slabs for UBOL projects	
(* cracked slabs includes shattered slabs, longitudinal, transverse, diagonal, and	
corner cracking))
Figure 3-4. Comparison of PCC strength PWL to cracked and patched slabs for BBOL projects	
(* cracked slabs includes shattered slabs, longitudinal, transverse, diagonal, and	
corner cracking)	;
Figure 3-5. Comparison of PCC air content PWL to cracked and patched slabs for BBOL	
projects (* cracked slabs includes shattered slabs, longitudinal, transverse, diagonal,	
and corner cracking)	;
Figure 3-6. Comparison of PCC air content PWL to cracked and patched slabs for BBOL	
projects (* cracked slabs includes shattered slabs, longitudinal, transverse, diagonal,	
and corner cracking)	ł
Figure 3-7. ESALs versus 2018 mean project IRI	;
Figure 3-8. ESALs versus percentage of cracked and patched slabs (* cracked slabs includes	
shattered slabs, longitudinal, transverse, diagonal, and corner cracking)	;
Figure 3-9. Interlayer type and slab thickness versus cracked and patched slabs for UBOL	
projects (* cracked slabs includes shattered slabs, longitudinal, transverse, diagonal,	
and corner cracking)	5
Figure 3-10. Interlayer type and slab thickness versus longitudinal cracked slabs for UBOL	
projects	<u>,</u>
Figure 3-11. Interlayer type and slab thickness versus transverse cracked slabs for UBOL	
projects	1
Figure 3-12. Design slab thickness versus cracked and patched slabs for UBOL projects (*	
cracked slabs includes shattered slabs, longitudinal, transverse, diagonal, and corner	
cracking)	,
Figure 3-13. Mean as-constructed slab thickness versus cracked and patched slabs for UBOL	
projects (* cracked slabs includes shattered slabs, longitudinal, transverse, diagonal.	
and corner cracking)	,
0/	

Figure 3-14. As-constructed slab thickness minus one standard deviation versus cracked and
patched slabs for UBOL projects (* cracked slabs includes shattered slabs,
longitudinal, transverse, diagonal, and corner cracking)
Figure 3-15. Slab thickness, slab width and shoulder type versus cracked and patched slabs for
UBOL projects (* cracked slabs includes shattered slabs, longitudinal, transverse,
diagonal, and corner cracking)
Figure 3-16. Slab thickness, slab width and shoulder type versus longitudinal cracked slabs for
UBOL projects
Figure 3-17. Slab thickness, slab width, and shoulder type versus transverse cracked slabs for
UBOL projects
Figure 3-18. Left joint—slab thickness, slab width and shoulder type versus longitudinal
cracked slabs for UBOL projects
Figure 3-19. Left wheelpath—slab thickness, slab width and shoulder type versus longitudinal
cracked slabs for UBOL projects
Figure 3-20. Center slab—slab thickness, slab width and shoulder type versus longitudinal
cracked slabs for UBOL projects
Figure 3-21. Right wheelpath—slab thickness, slab width and shoulder type versus longitudinal
cracked slabs for UBOL projects
Figure 3-22. Right joint—slab thickness, slab width and shoulder type versus longitudinal
cracked slabs for UBOL projects
Figure 3-23. Bottom-ioint—transverse cracked slabs versus slab thickness, slab width, and
interlayer for UBOL projects
Figure 3-24. Bottom—transverse cracked slabs versus slab thickness, slab width, and interlayer
for UBOL projects
Figure 3-25. Middle—transverse cracked slabs versus slab thickness. slab width, and interlayer
for UBOL projects
Figure 3-26. Top—transverse cracked slabs versus slab thickness. slab width, and interlayer for
UBOL projects
Figure 3-27. Top-joint—transverse cracked slabs versus slab thickness, slab width, and
interlaver for UBOL projects
Figure 3-28. Underlying payement effect on cracked and patched slabs for UBOL projects (*
cracked slabs includes shattered slabs, longitudinal, transverse, diagonal, and corner
cracking)
Figure 3-29. Interlayer type and slab thickness versus cracked and patched slabs for BBOL
projects (* cracked slabs includes shattered slabs, longitudinal, transverse, diagonal,
and corner cracking) 58
Figure 3-30 Interlayer type and slab thickness versus longitudinal cracked slabs for BBOL
projects.
Figure 3-31 Interlayer type and slab thickness versus transverse cracked slabs for BBOL
nrojects 59
Figure 3-32 Design slab thickness versus cracked and natched slabs for RROL projects (*
cracked slabs includes shattered slabs longitudinal transverse diagonal and corner
cracking)
Figure 3-33 As-constructed slab thickness versus cracked and natched slabs for RROI
projects

Figure 3-34. As-constructed minus one standard deviation slab thickness versus cracked and
patched stabs for BBOL projects (· cracked stabs includes shattered stabs,
longitudinal, transverse, diagonal, and corner cracking)
Figure 3-35. Slab thickness and shoulder type versus cracked and patched slabs for BBOL
projects
Figure 3-36. Slab thickness and shoulder type versus longitudinal cracked slabs for BBOL
projects
Figure 3-37. Left panel—slab thickness and shoulder type versus longitudinal cracked slabs for
BBOL projects
Figure 3-38. Right panel—slab thickness and shoulder type versus longitudinal cracked slabs for
BBOL projects
Figure 3-39. Slab thickness and shoulder type versus transverse cracked slabs for BBOL
nrojects 63
Figure 3-40 I eft panel_slab thickness and shoulder type versus transverse cracked slabs for
PDOL projects
Eigung 2 41 Dight mangle alah thioknoog and shoulden type yongya transverse anglyad alaha fan
Figure 5-41. Kight panel—stab unckness and shoulder type versus transverse cracked stabs for
BBOL projects
Figure 3-42. Underlying pavement effect on cracked and patched slabs for BBOL projects (*
cracked slabs includes shattered slabs, longitudinal, transverse, diagonal, and corner
cracking)
Figure 3-43. Shoulder type versus cracked and patched slabs for BOL projects (* cracked slabs
includes shattered slabs, longitudinal, transverse, diagonal, and corner cracking) 66
Figure 3-44. Shoulder type versus longitudinal cracked slabs for BOL projects
Figure 3-45. Left panel—shoulder type versus longitudinal cracked slabs for BOL projects 67
Figure 3-46. Center panel—shoulder type versus longitudinal cracked slabs for BOL projects. 67
Figure 3-47. Right panel—shoulder type versus longitudinal cracked slabs for BOL projects 68
Figure 3-48. Shoulder type versus transverse cracked slabs for BOL projects
Figure 3-49. Left panel—shoulder type versus transverse cracked slabs for BOL projects
Figure 3-50 Center panel—shoulder type versus transverse cracked slabs for BOL projects 69
Figure 3-51 Right nanel—shoulder type versus transverse cracked slabs for BOL projects
Figure 3-52 IRL time-series data for project 28 I-55 UBOL in Persiscot County 71
Figure 2-52. IRI time-series data for project 285. US 61 DDOL in Lefforson/Sta Conquiava
Figure 5-55. IKI time-series data for project 265, US 01 BBOL in Jenerson/Ste. Genevieve
$\Gamma_{i} = 2.54 \text{ JPL} $
Figure 3-54. IRI time-series data for project 38N, MO 291 BOL in Jackson County
Figure 3-55. IRI time-series data for project 38S, MO 291 BOL in Jackson County
Figure 3-56. 2018 IRI along project for project 2S, I-55 UBOL in Pemiscot County (the
horizontal line is the average IRI for the project and the stepped line is the average
IRI for 0.1-mi segments)73
Figure 3-57. 2018 IRI along project for project 28S, US 61 BBOL in Jefferson/Ste. Genevieve
County (the horizontal line is the average IRI for the project and the stepped line is
the average IRI for 0.1-mi segments)

LIST OF TABLES

Table 2-1. Inventory of UBOL projects provided by MoDOT	6
Table 2-2. Inventory of BBOL provided by MoDOT	8
Table 2-3. Inventory of BOL provided by MoDOT.	9
Table 2-4. Revised UBOL inventory with U.ID.	11
Table 2-5. Revised BBOL inventory with U.ID.	13
Table 2-6. Revised BOL inventory with U.ID.	14
Table 2-7. Summary of extracted SiteManager data coverage.	17
Table 2-8. Concrete overlay thickness for UBOL.	18
Table 2-9. Concrete overlay thickness for BBOL.	19
Table 2-10. PCC overlay strength for UBOL.	20
Table 2-11. PCC overlay strength for BBOL.	21
Table 2-12. PCC air content for UBOL by U.ID.	22
Table 2-13. PCC air content for BBOL by U.ID.	23
Table 2-14. TMS data elements	24
Table 2-15. Concrete overlay projects mean IRI (in/mi) for 2009 through 2018	25
Table 2-16. Mean faulting from 2017 and 2018 for the concrete overlay projects	27
Table 2-17. Distress types from the LTPP Guide used in the video surveys	29
Table 2-18. Cracked and patched slabs for UBOL.	33
Table 2-19. Cracked and patched slabs for BBOL.	35
Table 2-20. Cracked and patched slabs for BOL.	36
Table 3-1. Estimated accumulated ESALs from construction through 2018.	39
Table 3-2. Computed PWL from SiteManager data for UBOL	40
Table 3-3. Computed PWL from SiteManager data for BBOL	41
Table 3-4. UBOL estimated current patching needs	75
Table 3-5. BBOL estimated current patching needs.	76
Table 3-6. BOL estimated current patching needs	76
Table 5-1. MoDOT concrete overlay summary	84

LIST OF ACRONYMS

AADT	Annual Average Daily Traffic
AADTT	Average annual daily truck traffic
ACP	Asphalt overlay atop concrete composite pavement
ARAN	Fugro Automatic Road Analyzer
BBOL	Big Block Overlay
BCOA	Bonded concrete over asphalt
BCOAO	Bonded Concrete on Asphalt Overlay
BOL	Bonded Overlay
COM_VOL_BY_DIR	Number of trucks (FHWA class 4–13)
DHV	Design Hourly Volume
DL	Lane distribution factor
ESAL	Equivalent Single Axle Load
FDR	Full-depth concrete pavement patch
FHWA	Federal Highway Administration
HMA	Hot-mix asphalt concrete
Job.No.	Job or project number as assigned by MoDOT
JPCP	Jointed plain concrete pavement
JRCP	Jointed reinforced concrete pavement
LSL	Pay factor item lower specification limit
MoDOT	Missouri Department of Transportation
NRCCP	Nonreinforced Portland cement concrete pavement (also known as JPCP)
PCC	Portland Cement Concrete
PDR	Partial-depth concrete pavement patch
PWL	Percent within limits
PWLL	Lower PWL
PWL _U	Upper PWL
QL	Lower Quality Index
QLA	Quality Level Analysis
Qu	Upper Quality Index
RFP	Request for Proposals

RPCCP	Reinforced Portland cement concrete pavement (also known as JRCP)
TF	Truck factor
TMS	MoDOT's Transportation Management System database
U.ID.	Project identifier for concrete overlays, defined in tables 2-4, 2-5, and 2-6
UBOL	Unbonded Overlay
USL	Pay factor item upper specification limit

CHAPTER 1. INTRODUCTION

1.1 Background

Highway agencies are increasingly constructing concrete overlays as a cost-effective method of maintaining and preserving their pavement infrastructure. With applications on both existing concrete and existing asphalt roadways, and for pavements ranging in condition from poor to good, concrete overlays offer a long-lasting, sustainable rehabilitation strategy for pavements subjected to all traffic levels.

The Missouri Department of Transportation (MoDOT) has a long history of concrete overlay use dating back to US 40 in Callaway County circa 1932 (Trautman 2017), and over the last 20 years has constructed over 40 concrete overlay projects in a range of applications. The goal of this study was to review and evaluate the performance of bonded and unbonded overlays that have been constructed in Missouri as a first step in documenting their performance and working to improve MoDOT's overall concrete overlay selection, design, and construction procedures.

1.2 Problem Statement

The Request for Proposals (RFP) for this study outlined the following objectives:

- Inventory the routes and locations of the concrete overlays as detailed in the plans or from virtual site visits via ARAN videos and data. Many projects consist of a combination of full-depth pavement replacement and overlay, which needs to be distinguished by location and type. The completed inventory should include the travelway ID, direction, route, county, log limits of overlay section, lane number, type of interlayer (if applicable) and other identifying information. A complete list of concrete overlays that have been constructed will be provided by MoDOT.
- Document the thickness of each concrete overlay project, along with the air content and compressive strength, by pulling information from AASHTOWare Project SiteManager QC/QA data or other Construction and Materials records, as available.
- Tabulate the performance histories of the concrete overlays using data from the MoDOT Transportation Management System (TMS) database.
- Review the latest year of video from ARAN and document visible cracking along with patching and maintenance performed on the pavement.
- Estimate the current rehabilitation and maintenance requirements for each project.
- Identify any correlations between the condition/distress of the pavement and key project construction/materials data, including the type of interlayer (where applicable).
- Identify whether coring and construction data correspond with information shown on the construction plans.

1.3 Research Methodology

The research project includes the following tasks:

- Task 1: Project Management.
- Task 2: Data Collection of Existing Concrete Overlays.
- Task 3: Create Project Outline for Evaluation.
- Task 4: Conduct Analysis of Field Data.
- Task 5: Develop Interim Report and Research Summary.
- Task 6: Delivery of Final Report and Research Summary.

Further details on the activities involved in each of these work tasks are described below.

1.3.1 Task 1: Project Management

The contractor will facilitate a kick-off meeting with MoDOT to review the work plan, scope, and schedule; and establish a protocol for regular ongoing communications and coordination with the team. The finalized work plan will detail implementation of the following tasks as well as the resources and schedule required to carry them out.

1.3.2 Task 2: Data Collection of Existing Concrete Overlays

The contractor will collaborate with MoDOT on the available project design, construction, materials, and performance data. MoDOT will provide as available:

- ARAN video (accessible in MoDOT Central Office in Jefferson City).
- Access to TMS.
- Construction plans.
- QC/QA data as available from SiteManager.

1.3.3 Task 3: Create Project Outline for Evaluation

The contractor will create list of project data that includes, but not limited to, the following:

- Location Description:
 - Route.
 - County.
 - Log miles.
 - Lane miles.
 - Travelway ID.
 - Direction.
 - Lane Number.
- Design information:
 - Job number.

- Contract number.
- Overlay type.
- Design thickness.
- Base type.
- Interlayer type.
- Lane width / extended slab, if any.
- Shoulder type (tied or untied).
- Underlying pavement information (type, thickness, width, etc.).
- Construction information.
 - Thickness (from QC/QA cores).
 - Strengths.
- Air content.
- Mix design.

1.3.4 Task 4: Conduct Analysis of Field Data

The contractor will review all available field data, specifically:

- Latest year of ARAN video.
- TMS performance history.
- As-built plans.
- Available QC/QA data from SiteManager.

1.3.5 Task 5: Develop Interim Report and Research Summary

The contractor will draft an interim report describing the data acquisition, analysis, and findings; and recommend further action, if warranted. Upon completion, the contractor will submit the interim report to MoDOT for review. Within two weeks of submittal, contractor and MoDOT will meet to discuss the finding and plan further action as required. At a minimum, the following will be addressed in the report.

- Inventory of concrete overlays.
- Analysis of design information.
- Analysis of pavement condition.
- Correlation between construction/materials and performance.
- Current repair needs.
- Recommendations for future use of concrete overlays.

1.3.6 Task 6: Delivery of Final Report and Research Summary

After MoDOT's review is complete and documents have been edited to MoDOT's satisfaction, the final documents will be submitted as Word documents.

1.4 Report Overview

The remainder of the report consists of four additional chapters and eight appendices. Chapter 2 summarizes the data acquired for the various concrete overlays, from pavement design through pavement surficial distress. Chapter 3 discusses data analysis for the project and investigations into possible correlations of performance of the overlays to items such as thickness, slab geometry, interlayer and underlying pavement and base layers, and as-constructed material properties. Chapter 4 provides recommendations to improve the performance of concrete overlays in Missouri as well as additional research to be considered. Chapter 5 provides an overall summary of findings and recommendations.

Eight appendices are provided as a supplement to the main report; these include:

- Appendix A: MoDOT Concrete Overlay Inventory.
- Appendix B: Design Information.
- Appendix C: Construction Quality Assurance Data.
- Appendix D: Transportation Management System (TMS) Performance History Data.
- Appendix E: ESAL Calculations
- Appendix F: IRI Time Series Graphs.
- Appendix G: Current Repair Needs.
- Appendix H: Data Dictionary.

CHAPTER 2. PROJECT DATA

2.1 Introduction

Various types of data were collected for the 41 concrete overlays included in this study. This chapter presents the inventory of information collected for the overlays included in this study, including structural design information, construction quality assurance data, pavement performance history data, and surficial pavement distress ratings from ARAN videos collected in 2018. Summaries of the collected data are presented in this chapter with more detailed data found in Appendix A through Appendix D.

2.2 Inventory of Overlays

Three types of concrete overlays were included in the inventory of overlays for this project. The three types are:

- 1. Unbonded overlays (UBOL) are used to restore or increase the structural capacity and can be used on pavements that are moderately to severely deteriorated (Harrington and Fick 2014). Unbonded overlays typically have a bond breaker or interlayer material placed between the overlay and the existing pavement to provide for independent behavior. The concrete overlay essentially performs as a new pavement and is designed as such. MoDOT's UBOL projects are typically 8 in thick and include either a hot-mix asphalt (HMA) or geotextile interlayer, with a panel size of 15 ft long and 12 to 14 ft wide. Underlying pavements include HMA, concrete, and composite (asphalt over concrete) pavements. A total of 26 UBOL projects were included in the study, of which 3 were undoweled and the remaining 23 featured 1.25-in diameter dowel bars.
- 2. Big block overlays (BBOL) are also considered to be an unbonded overlay but with a typical 5 in thickness and a panel size of 6 ft by 6 ft. Interlayers used on the projects in the inventory include HMA, geotextile, or none. The underlying pavements include HMA, concrete, and composite (asphalt over concrete) pavements. A total of 9 BBOL projects were included in the study, and none of these were doweled.
- 3. Bonded overlays (BOL) are used to add structural capacity and eliminate surface distress on existing pavements that are in fair to good structural condition (Harrington and Fick 2014). Bonded overlays are thinner than the unbonded variety and rely on a strong bond with the underlying pavement. Proper surface preparation is key to the design and performance of BOL pavements. Typical BOL pavements in this project are 4 in thick with a 4 ft by 4 ft panel size. A total of 6 BOL projects were included in the study. All these BOLs were bonded concrete over asphalt (BCOA) with fibrillated polypropylene fibers and none contained dowel bars.

Table 2-1 through 2-3 provide the listing of the concrete overlay projects by type, as provided by MoDOT for this project and figure 2-1 shows their location on MoDOT's highway network. A more detailed inventory listing is provided in Appendix A.

No.	Travelway ID	Direction	Route Designation	Route	County	Begin Log	End Log	Completion Date
1	10	WB	IS	44	Webster/ Greene	194.696	200.670	2000
2	13	SB	IS	55	Pemiscot	193.053	208.152	2002
3	1100	EB	US	412	Pemiscot	29.545	37.433	2003
4	1100	EB	US	412	Pemiscot	27.849	29.560	2003
5	6512	NB	IS	255	St. Louis	0.000	3.750	2003
5	6513	SB	IS	255	St. Louis	0.000	3.750	2003
6	6040	NB	МО	291	Jackson	15.343	16.927	2004
6	6041	SB	МО	291	Jackson	32.498	34.075	2004
7	9	EB	IS	44	Lawrence	33.032	37.736	2005
7	10	WB	IS	44	Lawrence	252.490	257.218	2005
7R	9	EB	IS	44	Lawrence	33.032	37.736	2018
7R	10	WB	IS	44	Lawrence	252.490	257.218	2018
8	9	EB	IS	44	Crawford	204.608	213.567	2005
9	3560	EB	US	36	Macon	108.959	120.110	2005
10	9	EB	IS	44	Laclede	134.000	145.282	2006
11	1101	WB	US	412	Dunklin	22.800	27.000	2006
12	263	SB	IS	57	Mississippi	0.276	12.747	2007
13	6372	EB	IS	64	St. Louis/ St. Louis City	27.450	36.580	2007
13	6373	WB	IS	64	St. Louis/ St. Louis City	4.210	13.350	2007
14	264	NB	IS	57	Mississippi	13.032	21.925	2009
15	10	WB	IS	44	Phelps	105.653	113.884	2009
16	12	NB	IS	55	Cape/ Perry	105.000	108.000	2010
17	12	NB	IS	55	Pemiscot	0.000	15.068	2010

 Table 2-1. Inventory of UBOL projects provided by MoDOT.

No.	Travelway ID	Direction	Route Designation	Route	County	Begin Log	End Log	Completion Date
18	4984	NB	IS	35	Clinton	41.320	49.152	2010
18	4986	SB	IS	35	Clinton	65.282	73.115	2010
19	4984	NB	IS	35	Clay	24.843	33.053	2010
19	4986	SB	IS	35	Clay	81.391	89.600	2010
20	9	EB	IS	44	Franklin	251.484	256.562	2010
20	10	WB	IS	44	Franklin	33.632	38.717	2010
21	10	WB	IS	44	Pulaski	127.879	136.082	2011
22	12	NB	IS	55	Pemiscot	15.080	18.680	2015
23	6039	NB	IS	435	Jackson	0.045	3.345	2019
23	6042	SB	IS	435	Jackson	51.789	55.102	2019
24	4984	NB	IS	I-35	Davies	68.886	78.477	2006
24	4986	SB	IS	I-35	Davies	35.973	45.521	2006
24R	4984	NB	IS	I-35	Davies	68.886	78.477	2013
24R	4986	SB	IS	I-35	Davies	35.973	45.521	2013

 Table 2-1. Inventory of UBOL projects provided by MoDOT (continued).

In table 2-1 through 2-3, the first column labelled "No." is a MoDOT recordkeeping item. Two of the UBOL projects, I-44 in Lawrence County (No. 7 and 7R) and I-35 in Davies County (No. 24 and 24R) are listed twice since there was the original construction of the UBOL and then a rehabilitation project. I-64 in the City and County of St. Louis was constructed as a design-build project. After an initial review of project data availability and project history, the BOL project in Stone County was eliminated from further consideration in the study based on a lack of data.

The second column labelled "Travelway ID" is MoDOT inventory of travelways. Eastbound and westbound roadways on the Interstate have separate Travelway IDs. Many of the project were constructed in both directions on multi-travelway facilities and some BBOL and BOL projects were constructed at intersections and have four directional components and Travelway IDs.

7

No.	Travelway ID	Direction	Route Designation	Route	County	Begin Log	End Log	Completion Date
1	6102	SB	RT	D	Cass	0.051	3.131	2008
1	6103	NB	RT	D	Cass	23.095	26.175	2008
2	11	SB	US	61	Jefferson/ Ste. Genevieve	200.738	213.576	2009
2	7773	NB	US	61	Jefferson/ Ste. Genevieve	179.479	182.444	2009
3	3560	EB	US	36	Shelby/ Marion	162.176	169.428	2010
4	6365	NB	МО	79	Marion/ Ralls	78.500	86.232	2013
4	6366	SB	МО	79	Marion/ Ralls	1.721	9.453	2013
5	1975	SB	МО	5	Laclede	249.980	250.000	2014
6	6142	WB	МО	340	St. Louis	9.960	10.030	2014
7	1100	EB	US	412	Dunklin	26.880	27.260	2016
7	1101	WB	US	412	Dunklin	23.530	23.880	2016
8	11	SB	US	61	Scott	318.330	318.510	2016
8	7773	NB	US	61	Scott	74.560	74.720	2016
9	3534	EB	US	24	Randolph	135.400	135.510	2010
9	3533	WB	US	24	Randolph	80.260	80.360	2010
9	3534	SB	BUS	63	Randolph	1.030	1.110	2010
9	3533	NB	BUS	63	Randolph	8.470	8.550	2010
41	4984	NB		I-35	Davies			2006
41	4986	SB		I-35	Davies			2006

 Table 2-2. Inventory of BBOL provided by MoDOT.

No.	Travelway ID	Direction	Route Designation	Route	County	Begin Log	End Log	Completion Date
1	1975	SB	МО	5	Laclede	250.520	250.590	2003
1	1976	NB	МО	5	Laclede	102.160	102.220	2003
2	54	SB	МО	19	Ralls	8.411	8.480	2012
2	55	NB	МО	19	Ralls	254.320	254.400	2012
3	6041	NB	МО	291	Jackson	30.050	30.230	2003
3	6040	SB	МО	291	Jackson	19.100	19.310	2003
4	7783	WB	US	60	Newton	328.070	329.200	1999
4	7782	EB	US	60	Newton	11.570	12.700	1999
5	1029	WB	МО	34	Cape Girardeau	14.250	14.850	2009
6	1978	WB	МО	14	Christian	94.910	94.960	2008
6	1977	EB	МО	14	Christian	24.949	24.983	2008
7			BUS	13	Stone			2008

Table 2-3. Inventory of BOL provided by MoDOT.

Number 7 was removed from study.

Figure 2-1. Location map of project overlays

The project concrete overlays cover approximately 631 of MoDOT's highway network of 77,708 lane-miles (FHWA 2018), slightly less than 1 percent. Approximately 5 percent of MoDOT's Interstate centerline miles have an unbonded concrete overlay (Donahue 2017).

2.3 Design Information

The project plans and Summary Sheet for Concrete Paving Project (2-AA) were reviewed for each of the projects. The 2-AA sheets provide a record of construction and design features of a project. To the extent that information was available the following items were extracted from the design information and added to the project database.

- Confirmed overlay type (UBOL, BBOL, BOL).
- Project stationing.
- Overlay omissions due to bridges, intersections, and so on.
- Design thickness.
- Underlying pavement type and thickness.
- Base type and thickness.
- Interlayer type and thickness.
- Slab geometry.
 - Lane width / extended slab, if any.
 - Joint spacing.
- Shoulder type and tiebar design details.
- Dowel bar use and design details.
- Pavement drainage details.
- Design traffic information including annual average daily traffic (AADT), design hourly volume (DHV), percent trucks.

During the review of the design and other information there were some inaccuracies discovered in the original inventory. Table 2-4 through 2-6 contain the revised inventory information for UBOL, BBOL, and BOL, respectively. The far-left column, labeled U.ID., will be used to identify projects throughout this report. U.ID. is a combination of the sequential inventory number of an overlay and the direction of travel. The count of projects included in this study by overlay type are:

- UBOL 26 projects that contain 36 U.IDs.
- BBOL 9 projects that contain 19 U.IDs.
- UBOL 6 projects that contain 11 U. IDs.

U.ID.	No	Travelway ID	Direction	Designation	Route	County	Revised Log.Start	Revised Log.End
1 W	1	10	WB	IS	44	Webster/ Greene	197.717	203.576
2S	2	13	SB	IS	55	Pemiscot	193.100	208.123
3E	3	1100	EB	US	412	Pemiscot	29.457	37.433
4E	4	1100	EB	US	412	Pemiscot	27.849	29.560
5N	5	6512	NB	IS	255	St. Louis	0.323	3.750
58	5	6513	SB	IS	255	St. Louis	0.000	3.660
6N	6	6040	NB	МО	291	Jackson	15.343	16.772
6S	6	6041	SB	МО	291	Jackson	32.533	34.075
7E	7	9	EB	IS	44	Lawrence	33.032	37.472
7W	7	10	WB	IS	44	Lawrence	255.665	260.119
8E	7R	9	EB	IS	44	Lawrence	33.032	37.472
8W	7R	10	WB	IS	44	Lawrence	255.665	260.119
9E	8	9	EB	IS	44	Crawford	204.608	213.799
10E	9	3560	EB	US	36	Macon	109.058	120.110
11E	10	9	EB	IS	44	Laclede	134.600	141.077
12E	10	9	EB	IS	44	Laclede	141.077	145.120
13W	11	1101	WB	US	412	Dunklin	22.943	26.342
14S	12	263	SB	IS	57	Mississippi	0.369	12.747
15E	13	6372	EB	IS	64	St. Louis/ St. Louis City	27.450	36.580
15W	13	6373	WB	IS	64	St. Louis/ St. Louis City	4.210	13.350
16N	14	264	NB	IS	57	Mississippi	13.032	21.925
17W	15	10	WB	IS	44	Phelps	107.539	116.599
18N	16	12	NB	IS	55	Cape/ Perry	105.966	107.966
19N	17	12	NB	IS	55	Pemiscot	0.076	15.079
20N	18	4984	NB	IS	35	Clinton	41.838	48.878

Table 2-4. Revised UBOL inventory with U.ID.

U.ID.	No	Travelway ID	Direction	Designation	Route	County	Revised Log.Start	Revised Log.End
208	18	4986	SB	IS	35	Clinton	65.539	72.555
21N	19	4984	NB	IS	35	Clay	24.843	33.017
218	19	4986	SB	IS	35	Clay	81.393	89.600
22E	20	9	EB	IS	44	Franklin	251.534	256.562
22W	20	10	WB	IS	44	Franklin	36.538	41.554
23W	21	10	WB	IS	44	Pulaski	130.375	139.258
24N	22	12	NB	IS	55	Pemiscot	15.080	18.680
25N	23	6039	NB	IS	435	Jackson	0.045	3.330
258	23	6042	SB	IS	435	Jackson	51.789	55.080
26N	24	4984	NB	IS	I-35	Daviess	69.020	78.440
268	24	4986	SB	IS	I-35	Daviess	35.987	45.398

 Table 2-4. Revised UBOL inventory with U.ID. (continued).

The major change in these tables is the start and stop log miles based on video from MoDOT online ARAN Viewer (MoDOT 2019a) available through MoDOT's Data Zone (MoDOT 2016a). This item will be discussed in more detail later in this chapter.

Detailed design information for the concrete overlay projects can be found in Appendix B. A brief description of a few key design elements for the three overlay types is provided below.

2.3.1 Thickness

For the UBOL, the predominant design thickness was 8 in. Projects 2S, 8E, 8W, 15E, 15W, and 24N were designed with a 9 in thickness, while 3E and 4E were designed with a 12 in thickness. Projects 25N and 25S had a thickness cross section that varied from 8.5 to 11 in to improve drainage for that roadway section.

For the BBOL projects, the design thickness was:

- 5.0 in for projects 27S, 27N, 28S, 28N, 29S, 29N, 30S, and 30N.
- 5.5 in for projects 34E, 34W, 34S, and 34N.
- 6.0 in for projects 31S, 31N, 32S, 32N, 33S, and 33N.
- 8.0 in for projects 35N and 35S since this was a rehabilitation of projects 26N and 26S to reduce the slab size.

U.ID.	No	Travelway ID	Direction	Designation	Route	County	Revised Log.Start	Revised Log.End
278	1	6102	SB	RT	D	Cass	0.219	3.000
27N	1	6103	NB	RT	D	Cass	23.120	25.912
28S	2	11	SB	US	61	Jefferson/ Ste. Genevieve	200.925	213.675
28N	2	7773	NB	US	61	Jefferson/ Ste. Genevieve	180.376	193.124
29E	3	3560	EB	US	36	Shelby /Marion	162.199	169.418
30N	4	6365	NB	МО	79	Marion/ Ralls	78.520	86.141
30S	4	6366	SB	МО	79	Marion/ Ralls	1.811	9.432
31S	5	1975	SB	МО	5	Laclede	250.525	250.590
32W	6	6142	WB	МО	340	St. Louis	9.960	10.030
33E	7	1100	EB	US	412	Dunklin	23.532	23.879
33W	7	1101	WB	US	412	Dunklin	26.912	27.270
338	8	11	SB	US	61	Scott	319.163	319.322
33N	8	7773	NB	US	61	Scott	74.558	74.717
34E	9	3562	EB	US	24	Randolph	140.897	140.980
34W	9	3563	WB	US	24	Randolph	80.273	80.356
34S	9	3534	SB	BUS	63	Randolph	1.030	1.110
34N	9	3533	NB	BUS	63	Randolph	8.470	8.550
35N	24R	4984	NB	IS	I-35	Daviess	69.020	78.440
358	24R	4986	SB	IS	I-35	Daviess	35.987	45.398

Table 2-5. Revised BBOL inventory with U.ID.

All the BOL projects had a design thickness of 4 in. According to Section 506.10 of the *2019 Standard Specifications for Highway Construction* (MoDOT 2019b), all BCOA overlays contain 3.0 lb/yd³ of fibrillated polypropylene fibers. Trautman (2017) noted that all six BCOA projects constructed since 1999 have fibers.

U.ID.	No	Travelway ID	Direction	Designation	Route	County	Revised Log.Start	Revised Log.End
368	1	1975	SB	МО	5	Laclede	250.520	250.590
36N	1	1976	NB	МО	5	Laclede	102.146	102.220
37S	2	54	SB	МО	19	Ralls	8.411	8.480
37N	2	55	NB	МО	19	Ralls	254.348	254.415
38N	3	6040	NB	МО	291	Jackson	30.050	30.243
385	3	6041	SB	МО	291	Jackson	19.100	19.310
39W	4	7783	WB	US	60	Newton	328.070	328.500
39E	4	7782	EB	US	60	Newton	12.280	12.700
40W	5	1029	WB	МО	34	Cape Girardeau	NA	NA
41W	6	1978	WB	МО	14	Christian	94.910	94.960
41E	6	1977	EB	МО	14	Christian	24.902	24.954

 Table 2-6. Revised BOL inventory with U.ID.

2.3.2 Slab Geometry

All of the UBOL projects had transverse joint spacings of 15 ft and the standard design slab width for all UBOL projects was 12 ft, with the exception of:

- 13 ft for projects 16N, 18N, and 19N.
- 13.8 ft for projects 3E, 4E, and 13W.
- 14 ft for projects 10E, 11E, 12E, and 14S.

The BBOL projects had a slab size of 6 by 6 ft, except for project 35N and 35S, that sawed the original 15 by 12 ft UBOL slabs into quarters, resulting in 7.5 by 6 ft slabs.

All the BOL projects had a slab size of 4 by 4 ft.

2.3.3 Interlayer

For UBOL projects, the predominant interlayer type was a 1 in HMA layer, which was present in eighteen projects. Eleven projects used a geotextile, and seven were placed on top of the milled surface of the existing underlying HMA.

The most common interlayer type for BBOL projects was geotextile fabric, which was used by ten projects. Seven projects were placed on the milled surface of existing HMA, and two projects had a 1 in HMA layer.

BOL projects do not have an interlayer, as they are placed directly on top of the existing milled pavement surface.

2.3.4 Underlying Pavement and Base

The underlying pavement structure for the concrete overlay projects included in the study varied between concrete, asphalt, and composite pavements. For most projects, 45 out of 66, the thickness of the underlying pavement was not specified; for those that were, the thickness varied between 6 and 9 in. The distribution of the underlying pavement type for the UBOL projects is:

- 12 projects had a composite asphalt over concrete pavement (ACP) structure.
- 11 projects had a reinforced portland cement concrete pavement (RPCCP) structure.
- 7 projects had a non-reinforced portland cement concrete pavement (NRCCP) structure.
- 5 projects had an HMA pavement structure.
- No details were available for project 18N.

For BBOL projects, the distribution of the type of underlying pavement structures is as follows:

- 9 projects had an HMA structure.
- 4 projects had an ACP structure.
- 4 projects had a concrete underlying structure, 2 were RPCCP and 2 other NRCCP.
- No details were available for two projects, U. ID. 30N and 30S.

All of the BOL projects included in the study had an HMA layer as the underlying pavement type. Section 506.10.1 of the *2019 Standard Specifications for Highway Construction* (MoDOT 2019b) requires that the prepared base asphalt have a minimum thickness of 3 in. MoDOT personnel noted that when milling these intersections for profile there were instances where this minimum base asphalt thickness likely was not met.

In terms of the base layer for the existing underlying pavement structures, such information was not available for 42 of the 66 projects. For those that had a base type specified, they all had a 4 in aggregate base. Two projects (15E and 15W) had a rock base.

2.3.5 Shoulder Type

The UBOL projects had an almost even split between asphalt (16) and concrete shoulder (19) types. Only one project, 17W, did not have details regarding shoulder type. Beside asphalt and concrete shoulders, some BBOL projects had shoulder types classified as curb and gutter (31S, 33E, 33W, 34E, 34W, 34N, and 34S), while two projects (28N and 28S) had aggregate shoulders. BOL projects generally had asphalt or a curb and gutter shoulders.

2.3.6 Traffic

Design traffic data were extracted from project plans and included in the database. Traffic data fields included:

- Average Annual Daily Traffic (AADT):
 - At year zero or year of construction.
 - At year 'n', which for most projects was 20 years after construction.
- Design Hourly Volume (DHV).
- Percent trucks.
- Design speed.
- Directional factor.

There were eight BBOL and four BOL projects that only had traffic values for a 10-year design.

2.4 Construction Quality Assurance Data

MoDOT's SiteManager database was queried for construction material testing for the concrete overlay projects. Pertinent data to be used in this study included as-constructed thickness, PCC compressive strength, and PCC entrained air content. Data from SiteManager was extracted by Contract ID and Project Number (or Job Number), suggesting that the data may include testing results not related to the overlay work. This aggregation does not allow for the test results to be broken out by inventory direction (or by Travelway ID) as shown in tables 2-4 through 2-6.

The following actions were taken to extract data more representative of the overlay construction. These items were discussed and confirmed with MoDOT staff before execution.

- The extracted data were filtered to remove test results from non-overlay related pay items.
- The dataset test results labeled as QC testing (performed by the contractor) and QA testing (contained by MoDOT or their designee). These tests results were combined into one pool for analysis to allow for a larger sample size when performing analysis.
- For projects that were designated as metric, the following changes were made to the recorded data:
 - Projects labeled as metric and slump recorded value greater than 10: the recorded value was divided by 25.4 to convert mm to in.
 - Project labeled as metric and thickness recorded value greater than 20: the recorded value was divided by 25.4 to convert mm to in.
 - Project labeled as metric and strength recorded value between 0 and 100: the recorded value was multiplied by 145.0377 to convert MPa to lbf/in².
- Several imported items had apparent typographical errors, such as added or deleted zeros. Those values were corrected to their apparent values in coordination with MoDOT.

- Several of the PCC strength values were actually a record of the applied force. Those values were divided by the area of the core to obtain a strength value (the diameter of the core was assumed to be 3.98 in).
- A statistical review of the quartile results of the QC/QA data was made, with the following impacts:
 - All core thickness data were maintained.
 - Air content values below 2% were removed.

A summarized listing of the extracted data is provided in Appendix C.

2.4.1 Data Completeness

After performing the data cleaning actions described above, the resultant data coverage is shown in table 2-7. No material quality test values were available for the BOL projects.

Item	Compressive Strength Tests	PCC Overlay Core Thickness	Air Content
ID with Test Reported	41	40	38
Project Number with Test Reported	25	24	23
Number of Tests Performed on UBOL	3978	3262	1680
Number of Tests Performed on BBOL	830	810	284
Number of Tests Performed on BOL	0	0	0

 Table 2-7.
 Summary of extracted SiteManager data coverage.

2.4.2 Thickness—By Overlay Type

Tables 2-8 and 2-9 provide the design thickness, mean concrete overlay measured thickness value, standard deviation, and number of tests performed for the UBOL and BBOL projects, respectively. Note that in some cases multiple U.ID. designations are applied to the same Job.No. and test data for ease of reading. Section 502.10.4.5 of MoDOT's *2019 Standard Specifications for Highway Construction* (MoDOT 2019b) indicates that for determining quality level, the thickness is equal to the plan thickness minus 0.5 in.

U.ID.	Job.No.	Average, in	Standard Deviation, in	Count, No of Observations	Design Thickness, in
01W	NA	NA	NA	NA	NA
02S	NA	NA	NA	NA	NA
03E	NA	NA	NA	NA	NA
04E	NA	NA	NA	NA	NA
05N	J6I1486	9.51	1.23	396	8
05S	J6I1486	NA	NA	NA	NA
06N	NA	NA	NA	NA	NA
06S	NA	NA	NA	NA	NA
07E	J7I0721	NA	NA	NA	NA
07W	J7I0721	NA	NA	NA	NA
08E	J7I3074	9.93	0.72	65	9
08W	J7I3074	NA	NA	NA	NA
09E	J9I0509	8.92	0.38	14	8
10E	J2P0726	8.13	0.07	7	8
11E	J8I0747	7.79	0.46	10	8
12E	NA	NA	NA	NA	NA
13W	J0P0570	10.72	0.41	3	8
14S	J0I0973	7.96	0.61	270	8
15E	NA	NA	NA	NA	NA
15W	NA	NA	NA	NA	NA
16N	J0I0983	8.47	1.10	180	8
17W	J9I2166	9.15	1.47	147	8
18N	J0I2200	8.72	0.30	2	8
19N	J0I2171	8.16	0.64	246	8
20N	J1I1040	8.92	0.86	213	8
20S	J1I1040	NA	NA	NA	NA
21N	J4I1382	8.00	0.00	210	8
21S	J4I1382	NA	NA	NA	NA
22E	J6I2011	11.10	1.76	130	8
22W	J6I2011	NA	NA	NA	NA
23W	J9I2149	8.38	0.77	90	8
24N	J9P2244B	9.49	0.68	37	9
25N	NA	NA	NA	NA	NA
25S	NA	NA	NA	NA	NA
26N	J1I0895	8.82	0.78	83	8
26S	J1I0895	NA	NA	NA	NA

 Table 2-8. Concrete overlay thickness for UBOL.

Multiple U.ID.s are applied to the same Job.No. and tests.

U.ID.	Job.No.	Average, in	Standard Deviation, in	Count, No of Observations	Design Thickness, in
27N	J4S2246	5.99	0.58	56	5
27S	J4S2246	NA	NA	NA	NA
28N	J6S1961	5.62	0.93	175	5
28S	J6S1961	NA	NA	NA	NA
29E	J3P0792B	5.65	0.62	56	5
30N	J3P2193	5.22	0.88	80	5
30S	J3P2193	NA	NA	NA	NA
31S	NA	NA	NA	NA	NA
32W	NA	NA	NA	NA	NA
33E	J9S3010	6.34	0.34	3	6
33N	J9S3010	NA	NA	NA	NA
33S	J9S3010	NA	NA	NA	NA
33W	J9S3010	NA	NA	NA	NA
34E	J2P0779C	5.60	0.44	30	5.5
34N	J2P0779C	NA	NA	NA	NA
34S	J2P0779C	NA	NA	NA	NA
34W	J2P0779C	NA	NA	NA	NA
35N	NA	NA	NA	NA	NA
35S	NA	NA	NA	NA	NA

 Table 2-9.
 Concrete overlay thickness for BBOL.

Multiple U.ID.s are applied to the same Job.No. and tests.

2.4.3 Strength—By Overlay Type

Tables 2-10 and 2-11 display the mean PCC tested strength value, standard deviation, and number of tests performed for the UBOL and BBOL projects, respectively. Note that multiple U.ID. designations are applied to the same Job.No. and test data for ease of reading. Sections 501.3.8 and 502.10.4.5 of MoDOT's *2019 Standard Specifications for Highway Construction* (MoDOT 2019b) set a minimum compressive strength value of 4,000 lbf/in².

2.4.4 Air Content—By Overlay Type

Tables 2-12 and 2-13 display the mean PCC air content value, standard deviation, and number of tests performed for the UBOL and BBOL projects, respectively. Note that multiple U.ID.s are applied to the same Job.No. and test data for ease of reading. Section 501.10.2 of MoDOT's *2019 Standard Specifications for Highway Construction* (MoDOT 2019b) sets a minimum value for air content at 4.5% and a maximum value at 7.5%, but concrete with a value of up to 9.0% may be allowed. There were two Job.No. where only one air test was reported in the cleaned data set.
U.ID.	Job.No.	Average, lbf/in ²	Standard Deviation, lbf/in ²	Count, No of Observations
01W	NA	NA	NA	NA
02S	NA	NA	NA	NA
03E	NA	NA	NA	NA
04E	NA	NA	NA	NA
05N	J6I1486	5,358	1,117	395
05S	J6I1486	NA	NA	NA
06N	NA	NA	NA	NA
06S	NA	NA	NA	NA
07E	J7I0721	5,136	705	223
07W	J7I0721	NA	NA	NA
08E	J7I3074	6,712	1,033	65
08W	J7I3074	NA	NA	NA
09E	J9I0509	4,757	445	80
10E	J2P0726	5,857	712	126
11E	J8I0747	5,017	750	95
12E	J8I0748	4,948	584	30
13W	J0P0570	5,997	484	3
14S	J0I0973	5,888	626	278
15E	NA	NA	NA	NA
15W	NA	NA	NA	NA
16N	J0I0983	5,406	618	180
17W	J9I2166	5,544	1,089	163
18N	J0I2200	4,745	338	12
19N	J0I2171	6,393	620	246
20N	J1I1040	5,108	547	213
20S	J1I1040	NA	NA	NA
21N	J4I1382	7,153	753	210
21S	J4I1382	NA	NA	NA
22E	J6I2011	5,100	865	130
22W	J6I2011	NA	NA	NA
23W	J9I2149	6,094	850	90
24N	J9P2244B	5,834	734	37
25N	NA	NA	NA	NA
25S	NA	NA	NA	NA
26N	J1I0895	4,836	616	83
26S	J1I0895	NA	NA	NA

Table 2-10.	PCC	overlav	strength	for	UBOL.
	100	o, er my	Serengen		

U.ID.	Job.No.	Average, lbf/in ²	Standard Deviation lbf/in ²	Count, No of Observations
27N	J4S2246	5.604	259	36
27S	J4S2246	NA	NA	NA
28N	J6S1961	5,721	669	175
28S	J6S1961	NA	NA	NA
29 E	J3P0792B	4,786	409	56
30N	J3P2193	5,371	504	80
30S	J3P2193	NA	NA	NA
31S	NA	NA	NA	NA
32W	NA	NA	NA	NA
33E	J9S3010	6,125	1,170	18
33N	J9S3010	NA	NA	NA
33S	J9S3010	NA	NA	NA
33W	J9S3010	NA	NA	NA
34E	J2P0779C	5,666	792	30
34N	J2P0779C	NA	NA	NA
34S	J2P0779C	NA	NA	NA
34W	J2P0779C	NA	NA	NA
35N	NA	NA	NA	NA
35S	NA	NA	NA	NA

Table 2-11 .	PCC	overlav	strength	for	BBOL .
	IUU	U v CI Iay	sucugu	101	DDUL.

2.5 Transportation Management System (TMS) Performance History Data

MoDOT's Transportation Management System (TMS) database contains multiple data elements related to the performance of MoDOT's pavement infrastructure. The data are available to the public at the MoDOT Data Zone (MoDOT 2016a) and the ARAN Public Viewer (MoDOT 2019a). Additional information about these data sources can be found in documentation by MoDOT (2016b) and by Richardson et al. (2015).

The data elements shown in table 2-14 were extracted from the TMS database for each of the concrete overlay projects from the year of construction through 2018 based on the revised Log.Start and Log.End identifiers shown in tables 2-4 through 2-6.

Two documents describing the extracted data elements from TMS, AUTO_COND_SURVEY and SS_PAVEMENT_CURRENT, are contained in Appendix D.

2.5.1 IRI

Table 2-15 presents the project average IRI for all of the concrete overlay projects included in the study, from 2009 through 2018. The IRI data are recorded in the TMS database by wheelpath in 0.02 mi increments. Both wheelpath values are averaged to produce the results shown in table 2-14. The complete set of values for all years for the overlay projects are provided in Appendix D.

U.ID.	Job.No.	Average, %	Standard Deviation, %	Count, No of Observations
01W	NA	NA	NA	NA
02S	NA	NA	NA	NA
03E	NA	NA	NA	NA
04E	NA	NA	NA	NA
05N	J6I1486	6.03	1.24	278
05S	J6I1486	NA	NA	NA
06N	NA	NA	NA	NA
06S	NA	NA	NA	NA
07E	J7I0721	5.84	0.89	146
07W	J7I0721	NA	NA	NA
08E	NA	NA	NA	NA
08W	NA	NA	NA	NA
09E	NA	NA	NA	NA
10E	J2P0726	4.73	1.87	18
11E	J8I0747	6.60	0.91	20
12E	J8I0748	6.18	0.47	5
13W	J0P0570	8.25	1.47	8
14S	J0I0973	5.54	0.28	29
15E	NA	NA	NA	NA
15W	NA	NA	NA	NA
16N	J0I0983	5.60	0.89	72
17W	J9I2166	6.38	0.70	17
18N	J0I2200	6.59	0.14	8
19N	J0I2171	5.41	0.66	152
20N	J1I1040	6.24	1.54	173
20S	J1I1040	NA	NA	NA
21N	J4I1382	5.00	0.57	41
21S	J4I1382	NA	NA	NA
22E	J6I2011	7.37	0.82	26
22W	J6I2011	NA	NA	NA
23W	J9I2149	5.42	0.38	14
24N	J9P2244B	5.39	1.00	7
25N	NA	NA	NA	NA
258	NA	NA	NA	NA
26N	J1I0895	6.20	NA	1
26S	J1I0895	NA	NA	NA

Table 2-12.	PCC air	content for	UBOL	bv U.ID.
			0201	., c

U.ID.	Job.No.	Average, %	Standard Deviation, %	Count, No of Observations
27S	J4S2246	NA	NA	NA
28N	J6S1961	6.91	1.19	75
28S	J6S1961	NA	NA	NA
29E	J3P0792B	6.40	0.52	4
30N	J3P2193	6.93	0.55	19
30S	J3P2193	NA	NA	NA
31S	NA	NA	NA	NA
32W	NA	NA	NA	NA
33E	J9S3010	5.40	NA	1
33N	J9S3010	NA	NA	NA
33S	J9S3010	NA	NA	NA
33W	J9S3010	NA	NA	NA
34E	J2P0779C	5.80	0.83	6
34N	J2P0779C	NA	NA	NA
34S	J2P0779C	NA	NA	NA
34W	J2P0779C	NA	NA	NA
35N	NA	NA	NA	NA
35S	NA	NA	NA	NA

Table 2-13. PCC air content for BBOL by U.ID.

A review of the IRI data in table 2-14 does show some temporal inconsistencies. For example, for project 1W, the IRI exhibits a significant increase in 2010 and a significant decrease in 2017. A similar pattern can be seen in projects 12E and 33W, where the decrease takes place in 2018. Furthermore, for projects 18N and 19N, the overlays appear to have gotten smoother over time rather than rougher. Some of this variation may be due to equipment changes or slight variations in log.mile locations over time, but these do complicate using IRI as a performance indicator.

In looking at just the 2018 data, the UBOL projects are providing a very smooth ride with a mean IRI of 64 in/mi. The BBOL and BOL projects tend to exhibit much higher IRI values (131 in/mi and 263 in/mi respectively) than UBOL projects. This is certainly to be expected with the BOL projects as these are shorter and are often located at intersections, meaning that the construction of the pavement was likely done using forms and with significant hand work, making the ensuing IRI measurements more sensitive to a few surface deviations (such as might be encountered with complex longitudinal profiles).

Data Element
Year
TMS TRAVELWAY ID
TMS_ROUTE
DISTRICT_ABBR
COUNTY_NAME
ARAN_BEGIN_LOG
ARAN_END_LOG
DATE_COLLECTED
CURR_SURVEY_FLAG
C CRACKING RATING
C PATCHING RATING
D_CRACKING_RATING
F_CRACKING_RATING
F_PATCHING_RATING
PAVEMENT_ROUGH
DRIVER IRI
PASSENGER_IRI
PRES_SVC_RATING
JOINT_COND_RTNG
SPALLING_RATING
RAVELING_RATING
RUT_RATING
DRIVER_RUT_DEPTH
PASS_RUT_DPTH
CONDITION INDEX
LATITUDE
LONGITUDE
ELEVATION
GRADE
CROSSFALL
CRACK AREA LW

Table 2-14. TMS data elements.

Data Element
CRACK AREA RW
FAULTING
AREA DESG NAME
AADT
COM_VOL_BY_DIR
FUNC_CLASS_NAME
DIVIDED_UNDIVIDED
ROADWAY_TYPE_NAME
TW_SPEED_LIMIT_CD
STATE_BRIDGE_ID
SURFACE_TYPE
SURFACE_DATE
SHOULDER_TYPE
SHOULDER_WIDTH
MAINT_TYPE
MAINT_DATE
MAINT_JOB_NUMBER
SECTION_LANEMILES
SECTION_CENTERLINE
MAJOR_MINOR
TRACKER CONDITION
FHWA_CONDITION
USER_ID
N_ID
TRAVELWAY_ID
Dir
DESG
ROUTE
COUNTY
BEGIN_LOG
END_LOG

	Mean IRI (in/mi)									
U.ID.	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018
1W	NA	134	118	112	126	114	107	119	48	47
2S	NA	58	58	57	70	64	72	70	77	67
3E	60	61	61	62	62	63	63	64	62	63
4E	42	41	41	40	39	37	39	40	36	36
5N	NA	53	62	60	NA	50	63	57	63	55
5S	NA	51	57	60	53	52	59	55	61	55
6N	NA	116	132	117	119	120	118	120	117	114
6S	106	107	110	108	105	106	109	107	104	107
7E	NA	72	66	68	74	71	71	74	69	NA
7W	NA	39	36	35	37	39	46	51	54	NA
8E	NA	37								
8W	NA	81								
9E	NA	45	45	44	46	53	53	57	67	50
10E	NA	49	50	48	53	51	49	51	NA	45
11E	NA	78	80	76	78	79	83	86	79	61
12E	NA	77	80	76	79	83	86	89	90	51
13W	65	63	68	63	65	71	72	77	75	94
14S	NA	61	60	58	66	70	65	67	59	61
15E	NA	69	68	68	69	71	72	73	77	79
15W	NA	68	69	72	79	75	78	79	NA	87
16N	NA	64	68	67	70	71	66	66	63	68
17W	NA	69	73	77	NA	83	77	79	75	82
18N	NA	61	49	43	44	46	45	40	35	37
19N	NA	62	50	45	42	39	46	47	54	38
20N	NA	72	71	69	72	71	71	73	89	91
20S	NA	52	51	50	49	48	54	53	53	59
21N	NA	60	44	48	45	38	43	40	42	43
21S	NA	59	52	52	52	50	50	50	42	46
22E	NA	76	84	84	89	83	86	83	80	81
22W	NA	82	82	86	89	83	87	83	82	84
23W	NA	NA	61	59	58	59	58	59	47	50
24N	NA	42	40	39						
25N	NA									
258	NA									
26N	NA	97	100	109	NA	NA	NA	NA	NA	NA
26S	NA	95	110	111	NA	NA	NA	NA	NA	NA
27S	90	96	119	95	98	NA	103	100	87	NA
27N	81	NA	NA	NA	NA	98	NA	NA	NA	90

 Table 2-15.
 Concrete overlay projects mean IRI (in/mi) for 2009 through 2018.

U.ID.	Mean IRI (in/mi) 2009	Mean IRI (in/mi) 2010	Mean IRI (in/mi) 2011	Mean IRI (in/mi) 2012	Mean IRI (in/mi) 2013	Mean IRI (in/mi) 2014	Mean IRI (in/mi) 2015	Mean IRI (in/mi) 2016	Mean IRI (in/mi) 2017	Mean IRI (in/mi) 2018
28S	NA	85	87	92	95	NA	96	109	105	105
28N	NA	NA	NA	NA	NA	128	NA	NA	NA	NA
29E	NA	NA	73	75	82	93	94	88	75	NA
30N	NA	NA	NA	NA	145	52	54	50	47	43
30S	NA									
31S	NA	NA	NA	NA	NA	225	NA	230	349	284
32W	NA	183	NA	185	225	191	197	265	NA	199
33E	NA	134	59	NA						
33W	NA	160	95							
33S	NA	150	56	60						
33N	NA									
34E	NA	NA	NA	NA	213	NA	NA	NA	220	224
34W	NA	182	232	NA	NA	185	196	206	NA	NA
34S	NA	206	NA	NA	NA	NA	NA	145	NA	NA
34N	NA	NA	249	NA	135	247	167	NA	NA	194
35N	NA	NA	NA	NA	107	71	71	71	67	72
358	NA	NA	NA	NA	117	67	70	68	65	72
368	NA	123	252	NA	NA	225	NA	236	349	284
36N	NA	NA	NA	259	259	NA	NA	NA	NA	445
37S	NA	304								
37N	NA	220	NA							
38N	156	166	164	181	199	192	205	251	212	237
38S	234	229	209	250	296	256	317	254	295	286
39W	NA	NA	142	161	172	NA	204	190	158	168
39E	129	137	NA	NA	NA	148	NA	NA	NA	NA
40W	NA	NA	95	86	92	104	114	86	91	118
41W	NA	342	NA	NA	NA	NA	NA	NA	320	NA
41E	NA	NA	NA	317	NA	NA	NA	346	NA	NA

Table 2-15. Concrete overlay projects mean	n IRI (in/mi) for 200	09 through 2018 (continued).
--	-----------------------	------------------------------

2.5.2 Faulting

Faulting values are recorded only for 2017 and 2018 in the TMS database. The values are reported to the nearest 0.001 in. The TMS data reports both positive and negative faulting for the subject concrete overlays. In discussions with MoDOT staff, negative faulting values were treated as zeros for this project. Table 2-16 presents the average faulting values for each of the concrete overlay projects for 2017 and 2018. Only one project (31S) reported faulting for 2017 that would be considered objectionable with a value of 0.152 in, but in 2018 a value of 0.000 in was reported for that same project.

U.ID.	2017 Mean Faulting (in)	2018 Mean Faulting (in)
1W	0.005	0.007
2S	0.017	0.018
3E	0.009	0.009
4E	0.005	0.006
5N	0.007	0.006
5S	0.010	0.009
6N	0.006	0.007
6S	0.012	0.011
7E	0.029	0.000
7W	0.015	0.007
8E	NA	0.000
8W	NA	0.007
9E	0.013	0.010
10E	NA	0.009
11E	0.024	0.020
12E	0.046	0.026
13W	0.058	0.065
14S	0.009	0.010
15E	0.014	0.015
15W	NA	0.017
16N	0.002	0.003
17W	0.013	0.016
18N	0.017	0.016
19N	0.018	0.017
20N	0.033	0.039
20S	0.018	0.018
21N	0.005	0.006
21S	0.019	0.006
22E	0.008	0.007
22W	0.008	0.008
23W	0.007	0.008
24N	0.007	0.009
25N	NA	NA

Table 2-16. Mean faulting from 2017 and 2018 for the concrete overlay projects.

2.6 ARAN Video Distress Data

Under Task 4 of the project, the 2018 condition videos from MoDOT's ARAN surveys were reviewed to document the current surface condition for each concrete overlay project included in

the study. The review of the video surveys was performed using MoDOT's ARAN workstations located in Jefferson City, MO.

2.6.1 Methodology

For the review of the condition videos, a tailored distress assessment methodology was developed based on the distress identification manual used in FHWA's Long-Term Pavement Performance Program (LTPP) (Miller and Bellinger 2014). This assessment documented the type of distress, its associated severity, and its relative location on the slab. Table 2-16 summarizes the types of distresses from the LTPP manual that were used in the video surveys of each concrete overlay project.

To best define the cracking data among the three overlay types, there was some variation in the manner that the data was collected and recorded.

- UBOL
 - Longitudinal cracking was located within the five zones in each slab shown in figure 2-2.
 - Transverse cracking was located within the five zones in each slab shown in figure 2 2.
- BBOL
 - Shattered slabs, longitudinal cracks, transverse cracks, corner breaks, and patching were in the left or right panel as shown in figure 2-3.
 - Longitudinal cracking was located within the three zones in each panel shown in figure 2-2 (joint zones not included).
 - Transverse cracking was located within the three zones in each panel shown in figure 2-2 (joint zones not included).
 - Longitudinal cracks were identified if they affected a series of consecutive slabs or if they just occurred on single slabs.
 - Corner breaks were noted as being isolated or part of a system connected to a longitudinal crack.
- BOL
 - Distress maps were created that recorded the type and location of the distresses within each project. The goal of these semi-scale, distress maps was to keep a permanent record of the BOL distresses and potentially use them to identify cracking patterns that could suggest underlying distress mechanisms.
 - Shattered slabs, longitudinal cracks, transverse cracks, corner breaks, and patching were in the left, center, or right panel as shown in figure 2-3.
 - Longitudinal cracks were identified if they affected a series of consecutive slabs or if they just occurred on single slabs.
 - Corner breaks were noted as being isolated or part of a system connected to a longitudinal crack.

Distress Type	Quantification Method	Severity Level	Relative Position within Slab
Wear & Polish	Comment if present, not present	N/A	NA
Joint seal condition	Comment of the overall condition	N/A	NA
Durability cracking	Comment if present, not present	N/A	NA
Map cracking	Number of affected slabs	N/A	NA
Pop-outs	Number of affected slabs	N/A	NA
Scaling	Number of affected slabs	N/A	NA
Potholes	Number of affected slabs	N/A	NA
Shattered slabs	Number of affected slabs	N/A	NA
Spalling on transverse joint	Number of affected slabs	М, Н	Wheelpath or Non-wheelpath
Spalling on longitudinal joint	Number of affected slabs	М, Н	NA
Spalling on corner	Number of affected slabs	М, Н	NA
Transverse cracks	Number of affected slabs	L, M, H	Bottom, middle, or top zone of the slab Bottom or top transverse joint
Longitudinal cracks	Number of affected slabs	L, M, H	Left wheelpath, center, or right wheelpath zone of the slab Left or right longitudinal joint
Corner breaks	Number of affected slabs	L, M, H	Top-right, top-left, bottom-left, or bottom-right quadrant of the slab
Patching	Number of affected slabs and area affected	L, M, H	Longitudinal joint, transverse joint, center of slab, corner, or full panel

 Table 2-17. Distress types from the LTPP Guide used in the video surveys.

Severity Levels: L = low-severity, M = medium-severity, H = high-severity, N/A = Not applicable

Figure 2-2. Longitudinal and transverse cracking zones for UBOL slabs and BBOL panels not including joint zones.

Aside from the standard LTPP distresses, diagonal cracking was defined as a custom distress type that was documented during the video surveys. A diagonal crack is a hybrid between a corner break and a longitudinal crack, and is identified as a longitudinal crack that starts at least 3 ft apart from a corner of the slab and it wanders into one of the longitudinal joints (instead of progressing longitudinally). It is similar to a corner break except that it does not generally intersect both joints at a 45-degree angle.

For each concrete overlay included in the study, 100% of the ARAN footage (where available) was reviewed in one lane only and the type, severity, and location of distress recorded. The ARAN footage consisted of forward-looking right of way images and downward-facing pavement images (see figures 2-4 and 2-5). The total number of slabs affected by each distress was quantified and a percentage of slabs affected was calculated.

A Pavement Surface Evaluation and Rating (PASER) score was assigned to each project at the completion of the visual rating. The PASER score, between 0 and 10, is a subjective pavement condition assessment method that can be used to compare the relative condition of different pavement projects and to track the historical condition of individual sites (Walker 2015).

2.6.2 Issues and Challenges

In the review of the ARAN videos, several issues and challenges emerged, as noted below.

Figure 2-3. Panel location for BBOL and BOL projects.

Figure 2-4. ARAN display of forward camera (left panel), laser measured downward distance (center panel), and laser measure downward intensity (right panel) for project 12E, I-44 in Laclede County with no visible distress.

Figure 2-5. ARAN display of forward camera (left panel), laser measured downward distance (center panel), and laser measure downward intensity (right panel) for project 12E, I-44 in Laclede County with corner patches and longitudinal cracks.

- Videos were not available for several of the project included in the project. Those projects are noted with a NA in the tables in this section.
- The software used to review the ARAN footage did not have the capability to mark distresses on the downward images or to generate summaries directly. Instead, a spreadsheet was used to manually keep track of the distresses that were identified, a process that considerably slowed the overall rating process.
- The software also did not have a measuring tool to evaluate the dimensions of patches; therefore, the patching sizes had to be estimated based on the location of the patch its comparison to the size of the slab.

2.6.3 UBOL—Slab Condition Summary

Table 2-18 presents a summary of slabs being affected by cracking and patching for UBOL projects. The percentages presented in this table represent the relative number of slabs affected by these types of distresses for only one lane of each project, accounting for shattered slabs, transverse and longitudinal cracks, and corner breaks at all severity levels.

The data showed significant variability in terms of the amount of slabs cracked, ranging from 0% in the case of projects 8W and 18N up to 26.36% exhibited by project 17W. It was interesting to note that some of the oldest projects, 1W and 2S constructed in 2000 and 1986, respectively, exhibiting slab cracking percentages below 0.50%. A similar effect can be observed regarding the percentage of area that has been patched, with nearly half of all projects exhibiting no observed patching and two projects with the patched area exceeding 2%.

No data were available for projects 7E, 7W, 26N, and 26S because these projects had been rehabilitated. Projects 7E and 7W were replaced by another concrete overlay (project 8E and 8W), while project 26N and 26S were rehabilitated by sawing the 15 ft by 12 ft panels into 7.5 ft by 6 ft slabs; that rehabilitated overlay pavement is documented under project 35N and 35S.

	Overlay	Lane	PASER	Total Number	Total	% Creaked	% Datahad	% Detahod
U.ID.	Туре	Surveyed	Score	of Slabs	ft ²	Slabs	Slabs	Area
1W	UBOL	DL	7	1,677	301,860	0.36%	0.24%	0.10%
2S	UBOL	DL	7	5,202	936,360	0.37%	0.27%	0.13%
3E	UBOL	DL	8	2,776	499,680	0.90%	0.00%	0.00%
4E	UBOL	DL	8	3,374	607,320	0.36%	0.00%	0.00%
5N	UBOL	CL (2nd from left)	6	1,226	220,680	3.02%	0.00%	0.00%
55	UBOL	CL (2nd from left)	6	1,246	224,280	3.53%	0.08%	0.03%
6N	UBOL	DL	8	479	86,220	0.00%	0.00%	0.00%
6S	UBOL	DL	8	519	93,420	0.00%	0.00%	0.00%
7E	UBOL	NA	NA	NA	NA	NA	NA	NA
7W	UBOL	NA	NA	NA	NA	NA	NA	NA
8E	UBOL	DL	7	1,567	282,060	0.13%	0.00%	0.00%
8W	UBOL	DL	8	1,559	280,620	0.00%	0.00%	0.00%
9E	UBOL	DL	4	3,203	576,540	22.73%	1.56%	0.74%
10E	UBOL	DL	6	3,817	687,060	4.95%	0.13%	0.13%
11E	UBOL	DL	5	2,252	405,360	9.55%	3.73%	1.05%
12E	UBOL	DL	5	1,346	242,280	13.74%	3.71%	0.85%
13W	UBOL	DL	7	1,113	200,340	1.62%	0.00%	0.00%
14S	UBOL	DL	5	4,044	727,920	7.37%	0.79%	0.63%
15E	UBOL	CL	7	3,106	559,080	0.16%	0.06%	0.06%
15W	UBOL	CL	7	3,102	558,360	0.68%	0.19%	0.17%
16N	UBOL	DL	7	3,095	557,100	1.55%	0.00%	0.00%
17W	UBOL	DL	4	3,035	546,300	26.36%	5.27%	2.08%
18N	UBOL	DL	8	703	126,540	0.00%	0.00%	0.00%
19N	UBOL	DL	6	5,238	942,840	9.07%	0.67%	0.39%
20N	UBOL	DL	3	2,473	445,140	10.07%	1.42%	0.93%
20S	UBOL	DL	4	2,480	446,400	8.31%	3.87%	2.38%
21N	UBOL	DL	6	2,804	504,720	1.18%	0.04%	0.01%
21S	UBOL	DL	5	2,799	503,820	2.82%	2.04%	1.20%
22E	UBOL	DL	7	1,448	260,640	0.62%	0.07%	0.07%
22W	UBOL	CL (2nd from left)	7	1,456	262,080	1.17%	0.00%	0.00%
23W	UBOL	DL	7	3,080	554,400	1.36%	0.03%	0.03%
24N	UBOL	DL	8	1,144	205,920	0.17%	0.00%	0.00%

Table 2-18. Cracked and patched slabs for UBOL.

U.ID.	Overlay Type	Lane Surveyed	PASER Score	Total Number of Slabs	Total Area, ft ²	% Cracked Slabs	% Patched Slabs	% Patched Area
25N	UBOL	CL (2nd from left)	10	1,065	191,700	0.00%	0.00%	0.00%
258	UBOL	CL (2nd from left)	10	1,061	190,980	0.00%	0.00%	0.00%
26N	UBOL	NA	NA	NA	NA	NA	NA	NA
26S	UBOL	NA	NA	NA	NA	NA	NA	NA

 Table 2-18. Cracked and patched slabs for UBOL (continued).

% Cracked Slabs includes shattered slabs, transverse and longitudinal cracks, and corner breaks.

% Patched Slabs includes longitudinal and transverse joints, mid-panel, and full-panel patches.

% Patched Area includes areas from longitudinal and transverse joints, mid-panel, and full-panel patches.

2.6.4 BBOL—Slab Condition Summary

Table 2-19 presents a summary of slabs being affected by cracking and patching for BBOL projects. The percentages presented in this table represent the relative number of slabs affected by these types of distresses for only one lane of each project, accounting for shattered slabs, transverse and longitudinal cracks, and corner breaks at all severity levels. Since many BBOL projects were constructed on two-lane highways and MoDOT only performs its ARAN survey on one lane, almost all BBOL project data were available for only one direction.

Unlike what was observed with the UBOL projects, BBOL projects had a range of cracked slabs ranging from 0% to just below 9%, much lower than the highest observed percentages on UBOL projects. The projects with the highest percentage of cracked slabs were projects 35N and 35S which were rehabilitation for the UBOL projects 26N and 26S. This cracking is probably more indicative of the performance of the UBOL and not the BBOL. Patching quantities remained relatively low, with the highest observed percentage area at 1.20%.

2.6.5 BOL—Slab Condition Summary

Table 2-20 presents a summary of slabs being affected by cracking and patching for BOL projects. The percentages presented in this table represent the relative number of slabs affected by these types of distresses for only one lane of each project, accounting for shattered slabs, transverse and longitudinal cracks, and corner breaks at all severity levels. Like BBOL projects, MoDOT only collects data for one lane on 2-lane highways, so almost all the BOL projects had data available for only one direction. In the case of project 40W, no video was available.

While the total number of observations available for BOL projects was smaller than for the UBOL and BBOL projects, significant variability was observed in the data, with results ranging from 0 to almost 24%. Patching percentages on BOL projects ranged from 0 to over 10%.

U.ID.	Overlay Type	Lane Surveyed	PASER Score	Total Number of Slabs	Total Area (ft ²)	% Cracked Slabs	% Patched Slabs	% Patched Area
278	BBOL	DL	7	4,895	176,220	0.82%	0.61%	0.61%
27N	BBOL	NA	NA	NA	NA	NA	NA	NA
28S	BBOL	DL	4	22,099	795,564	1.62%	0.29%	0.29%
28N	BBOL	NA	NA	NA	NA	NA	NA	NA
29E	BBOL	DL	6	12,708	457,488	4.48%	1.20%	1.20%
30N	BBOL	DL	7	12,866	463,176	0.54%	0.11%	0.11%
30S	BBOL	NA	NA	NA	NA	NA	NA	NA
31S	BBOL	NA	NA	NA	NA	NA	NA	NA
32W	BBOL	DL	9	141	5076	0.00%	0.00%	0.00%
33E	BBOL	DL	9	486	17496	0.00%	0.00%	0.00%
33W	BBOL	DL	8	624	22,464	0.32%	0.00%	0.00%
338	BBOL	DL	8	141	5,076	0.00%	0.00%	0.00%
33N	BBOL	NA	NA	NA	NA	NA	NA	NA
34E	BBOL	NA	NA	NA	NA	NA	NA	NA
34W	BBOL	DL	8	159	5,724	4.40%	0.00%	0.00%
348	BBOL	NA	NA	NA	NA	NA	NA	NA
34N	BBOL	DL	7	141	5,076	5.67%	0.00%	0.00%
35N	BBOL	DL	6	11,680	420,480	8.79%	0.09%	0.09%
358	BBOL	DL	6	12,690	456,840	8.43%	0.29%	0.29%

Table 2-19. Cracked and patched slabs for BBOL.

% Cracked Slabs includes shattered slabs, transverse and longitudinal cracks, and corner breaks.

% Patched Slabs includes longitudinal and transverse joints, mid-panel, and full-panel patches.

% Patched Area includes areas from longitudinal and transverse joints, mid-panel, and full-panel patches.

2.7 Summary

This chapter describes the inventory of data that was collected for the concrete overlay projects included in the study. The sources of all data are provided, and interim steps taken to process the data are summarized. Summaries of the collected data are presented in this chapter with more detailed data found in Appendix A through Appendix D.

U.ID.	Overlay Type	Lane Surveyed	PASER Score	Total Number of Slabs	Total Area (ft ²)	% Cracked Slabs	% Patched Slabs	% Patched Area
36S	BOL	NA	NA	NA	NA	NA	NA	NA
36N	BOL	PL	7	285	4562	0.35%	0.00%	0.00%
37S	BOL	DL	7	238	3,802	23.99%	0.00%	0.00%
37N	BOL	NA	NA	NA	NA	NA	NA	NA
38N	BOL	DL	6	792	12,672	2.65%	7.45%	7.45%
38S	BOL	DL	5	792	12,672	14.52%	10.73%	10.73%
39W	BOL	DL	7	1604	25661	3.12%	0.31%	0.31%
39E	BOL	NA	NA	NA	NA	NA	NA	NA
40W	BOL	NA	NA	NA	NA	NA	NA	NA
41W	BOL	DL	8	198	3,168	0.00%	0.00%	0.00%
41E	BOL	NA	NA	NA	NA	NA	NA	NA

Table 2-20. Cracked and patched slabs for BOL.

% Cracked Slabs includes shattered slabs, transverse and longitudinal cracks, and corner breaks.

% Patched Slabs includes longitudinal and transverse joints, mid-panel, and full-panel patches.

% Patched Area includes areas from longitudinal and transverse joints, mid-panel, and full-panel patches.

CHAPTER 3. DATA ANALYSIS AND DISCUSSION

3.1 Introduction

Pavement performance is affected by many items, such as the structural design and included design features, quality of construction, age, traffic loading, and so on. This chapter discusses the analysis of the data collected for the project as outlined in Chapter 2. Unfortunately, there are a number of confounding factors involved in evaluating the performance of the various overlay types (including such things as slab thickness, slab dimensions, interlayer type, shoulder type, geographic location, and traffic loading) that in many cases make it difficult to make direct performance comparisons or draw definitive conclusions. Nevertheless, these different design features as well as various construction and material quality indicators were evaluated in terms of their correlation to performance and the results presented in this chapter. In addition, current repair needs for the different overlays included in the study are presented.

3.2 Estimated Equivalent Single Axle Loading

Because traffic loading is an important aspect of pavement performance, and to provide a method of comparing the performance of concrete overlays based on their loading history, it was decided to characterize the traffic loading sustained by each overlay type in terms of the number of equivalent single-axle load (ESAL) repetitions. The ESAL concept is a methodology that has been applied to pavement design and evaluation since the AASHO Road Test conducted in 1958-1960. The use of ESALs converts the loading from a mixed traffic stream into an equivalent number of 18,000-lb single axles. This method can be used to establish pavement damage relationships for axles carrying different loads. MoDOT does not normally use ESAL to quantify truck loading since they use a load spectrum as part of their mechanistic approach to pavement design.

To compare the traffic loading that the different concrete overlays received during their life, estimated ESALs have been calculated for each overlay. The approach described in the 1993 *Guide for Design of Pavement Structures* (AASHTO 1993) has been used for guidance in this calculation. To estimate ESALs, the following methodology was applied:

- Obtain AADT at year 0 (year of construction) from construction plans or the ARAN public viewer (MoDOT 2019a) and then apply the percent of trucks of the AADT to obtain AADTT-0. Based on MoDOT's documentation, COM_VOL_BY_DIR could be considered as AADTT, trucks in FHWA class 4 through 13.
- Use AADTT-n from MoDOT TMS and AADTT-0 to calculate the growth rate and then obtain the growth factor from year-0 to 2018.
- Use assumed truck factors (TF) of 0.75 for interstates, 0.60 for US routes, and 0.50 for all others.
- Use the lane distribution factors (D_L) from AASHTO (1993); 1-lane=1.00, 2-lane=0.90, 3-lane=0.70, 4-lane=0.60.
- Growth factor is calculated as GF= ((1+Growth Rate)^(2018-Year of Construction+1)-1)/Growth Rate.
- ESAL= (AADTT at Year 0)*365*GF*TF*DL

Table 3-1 presents the estimated accumulated ESALs for the concrete overlay projects from construction through 2018. The estimated ESALs range from about 166,000 for project 30N (the northbound BOL on Missouri 79 in Marion and Ralls counties) to more than 26 million for project 1W (the westbound I-44 in Webster and Greene counties and the oldest project in this study). The estimated ESALs are used through this report to compare the performance of various design features of the concrete overlays.

3.3 Construction Quality Assurance

MoDOT, like many other state highway agencies in the U.S., uses a quality level analysis (QLA) as a tool to judge the quality and value of the material incorporated into a highway project. The QLA considers the variability (standard deviation) of the material and the testing procedures, as well as the average (mean) value of the test results to calculate the percentage of material that is within the specification tolerance limit. For concrete overlays, MoDOT uses percentage of material that is above the lower specification tolerance limit (LSL) for compressive strength and thickness as part of their normal QLA (MoDOT 2019b). Percent within limits (PWL) is the QLA that MoDOT applies as discussed is Section 502.10.4 of the *2019 Standard Specifications for Highway Construction* (MoDOT 2019b). Additional information on PWL is provided by Burati et al. (2002).

The LSL for PCC compressive strength is 4,000 lbf/in². As described in chapter 2, the LSL for concrete overlay thickness per MoDOT's specifications (MoDOT 2019b), Section 502.10.4.5, is based off of the design thickness minus 0.5 in. The analysis below will consider the computed PWL using both the design thickness and design thickness minus 0.5 in as the LSL.

The PWL values for measured air content are also calculated, but only for the UBOL and BBOL projects since there were no construction quality data extracted from SiteManager for the BOL projects. MoDOT (2019b) Section 501.10.2, sets a minimum value for air content at 4.5% and a maximum at 7.5%, which will become the LSL and upper specification tolerance limit (USL) respectively.

3.3.1 PWL Results

Table 3-2 presents the PWL for the UBOL projects while table 3-3 presents the PWL for the BBOL projects.

3.3.2 PWL Discussion

For a contractor to receive full payment for concrete pavement under MoDOT's specifications (MoDOT 2019b), Section 502.15.4, the PWL must be equal to or greater than 90%. For the 19 UBOL Job.No.s that reported data from SiteManager, the 90% PWL level was met for thickness for five, strength for eighteen, and air content on seven. For the six BBOL projects, one met the 90% PWL level for design thickness, six for strength, and two for air content.

Figure 3-1 through 3-6 present computed PWL for thickness, strength, and air content for overlay projects with data from tables 3-2 and 3-3, compared to surficial concrete overlay distress as measured by cracked and patched slabs from the ARAN video review.

Project	Route	County	ESAL	Proje
1W	44	Webster/Greene	26,576,229	24N
2 S	55	Pemiscot	14,148,383	26 N
3 E	412	Pemiscot	2,386,571	265
4 E	412	Pemiscot	2,528,867	27
5N	255	St. Louis	19,408,184	275
58	255	St. Louis	19,233,026	
6N	291	Jackson	3,047,273	281
6S	291	Jackson	3,134,842	286
7 E	44	Lawrence	13,865,483	200
7W	44	Lawrence	16,825,070	301
8 E	44	Lawrence	880,791	319
8 W	44	Lawrence	1,387,091	320
9E	44	Crawford	17,738,333	321
10E	36	Macon	2,773,336	336
11E	44	Laclede	12,012,366	330
12E	44	Laclede	12,328,260	3/1
13W	412	Dunklin	2,334,411	341
14S	57	Mississippi	10,701,049	341
15E	64	St. Louis/ St. Louis City	18 537 898	34V
101	01	St. Louis/	10,007,000	35N
15W	64	St. Louis City	20,339,221	358
16N	57	Mississippi	6,878,989	36 N
17W	44	Phelps	11,351,269	365
18N	55	Cape/Perry	3,947,766	371
19N	55	Pemiscot	9,981,999	375
20N	35	Clinton	6,795,634	381
20S	35	Clinton	8,971,126	385
21N	35	Clay	8,830,726	39 E
21S	35	Clay	11,568,619	39V
22E	44	Franklin	12,118,466	40V
22W	44	Franklin	12,915,563	41
23W	44	Pulaski	10,548,205	41V

 Table 3-1. Estimated accumulated ESALs from construction through 2018.

Project	Route	County	ESAL
24N	55	Pemiscot	4,973,554
26N	I-35	Daviess	6,824,510
26 S	I-35	Daviess	7,165,333
27N	D	Cass	502,792
27S	D	Cass	530,974
		Jefferson/	
28N	61	Ste. Genevieve	310,420
200	(1	Jefferson/	212.077
285	61	Ste. Genevieve	212,077
29E	36	Shelby/Marion	2,296,733
30N	79 7	Marion/Ralls	166,290
318	5	Laclede	1,752,383
32W	340	St. Louis	1,937,984
33E	412	Dunklin	1,658,126
33 S	61	Scott	280,415
33W	412	Dunklin	2,186,778
34E	24	Randolph	638,761
34N	63	Randolph	239,229
34S	63	Randolph	305,254
34W	24	Randolph	967,470
35N	I-35	Daviess	2,742,880
35S	I-35	Daviess	2,870,262
36N	5	Laclede	2,259,710
36S	5	Laclede	3,227,617
37N	19	Ralls	660,424
37 S	19	Ralls	747,061
38N	291	Jackson	4,540,689
38 S	291	Jackson	5,776,621
39 E	60	Newton	2,762,825
39W	60	Newton	2,495,944
40W	34	Cape Girardeau	726,385
41E	14	Christian	449,680
41W	14	Christian	643,927

U.ID.	Job.No.	Concrete Overlay Thickness PWL (Design-0.5 in)	Concrete Overlay Thickness PWL (Design)	PCC Strength PWL	PCC Air Content PWL
05N	J6I1486	95	89	89	77
05S	J6I1486	95	89	89	77
07E	J7I0721	NA	NA	NA	NA
07W	J7I0721	NA	NA	NA	NA
08E	J7I3074	98	90	99	NA
08W	J7I3074	98	90	99	NA
09E	J9I0509	100	99	96	NA
10E	J2P0726	100	96	99	49
11E	J8I0747	74	50	91	83
12E	J8I0748	NA	NA	95	100
13W	J0P0570	100	100	100	31
14S	J0I0973	77	50	99	100
16N	J0I0983	81	66	99	87
17W	J9I2166	87	78	92	94
18N	J0I2200	NA	NA	99	100
19N	J0I2171	85	60	100	92
20N	J1I1040	95	86	98	66
20S	J1I1040	95	86	98	66
21N	J4I1382	NA	NA	100	81
21S	J4I1382	NA	NA	100	81
22E	J6I2011	98	96	90	56
22W	J6I2011	98	96	90	56
23W	J9I2149	87	69	99	99
24N	J9P2244B	93	76	99	79
26N	J1I0895	96	85	91	NA
26S	J1I0895	96	85	91	NA

Table 3-2	Computed PV	VL from	SiteManager	data	for	UBOL
1 abic 5-2.	Computer v	VL/HOM	Sittmanager	uata	101	UDUL

Figures 3-1 and 3-2 show an apparent relationship between thickness PWL and the performance of UBOL and BBOL projects. PWL values below 90% generally show a higher level of distress. This is especially apparent when comparing the PWL for design thickness rather than design thickness minus 0.5 in as allowed in MoDOT's specifications (MoDOT 2019b). Figure 3-1 should be compared to figure 3-12 through 3-14 (presented later) to judge the effect of asconstructed thickness versus design thickness.

Similar evaluations were done for strength and air content (see Figures 3-3 through 3-6) but these do not appear to show any relationship. Strength PWL values were generally above 90%, showing that projects were being constructed with more than adequate strength. Air content for the concrete overlay projects showed no obvious relationship with cracked and patched slabs. This analysis was limited by the inability to match location of distresses and material test results.

U.ID.	Job.No.	Concrete Overlay Thickness PWL (Design-0.5 in)	Concrete Overlay Thickness PWL (Design)	PCC Strength PWL	PCC Air Content PWL
27N	J4S2246	99	96	100	75
27S	J4S2246	99	96	100	75
28N	J6S1961	89	75	99	67
28S	J6S1961	89	75	99	67
29E	J3P0792B	97	85	98	98
30N	J3P2193	80	60	99	85
30S	J3P2193	80	60	99	85
33E	J9S3010	100	83	97	NA
33N	J9S3010	100	83	97	NA
33S	J9S3010	100	83	97	NA
33W	J9S3010	100	83	97	NA
34E	J2P0779C	92	59	99	92
34N	J2P0779C	92	59	99	92
34S	J2P0779C	92	59	99	92
34W	J2P0779C	92	59	99	92

Table 3-3	Computed	PWL from	SiteManager	data	for BROL
1 abic 5-5.	Computeu		Sitemanager	uata	IUI DDUL

Figure 3-1. Comparison of concrete overlay thickness PWL to cracked and patched slabs for UBOL projects (* cracked slabs includes shattered slabs, longitudinal, transverse, diagonal, and corner cracking).

Figure 3-2. Comparison of concrete overlay thickness PWL to cracked and patched slabs for BBOL projects (* cracked slabs includes shattered slabs, longitudinal, transverse, diagonal, and corner cracking).

Figure 3-3. Comparison of PCC strength PWL to cracked and patched slabs for UBOL projects (* cracked slabs includes shattered slabs, longitudinal, transverse, diagonal, and corner cracking).

Figure 3-4. Comparison of PCC strength PWL to cracked and patched slabs for BBOL projects (* cracked slabs includes shattered slabs, longitudinal, transverse, diagonal, and corner cracking).

Figure 3-5. Comparison of PCC air content PWL to cracked and patched slabs for BBOL projects (* cracked slabs includes shattered slabs, longitudinal, transverse, diagonal, and corner cracking).

Figure 3-6. Comparison of PCC air content PWL to cracked and patched slabs for BBOL projects (* cracked slabs includes shattered slabs, longitudinal, transverse, diagonal, and corner cracking).

3.4 Performance Correlations

This section discusses the correlation of concrete overlay performance to various design features. Several performance indicators were possible for use in this project, including the percentage of cracked and patched slabs, transverse faulting, and roughness (IRI). The faulting measurements were extremely low and were not expected to provide any meaningful results, but preliminary performance comparisons across all overlay types were developed using both cracked and patched slabs and IRI as performance indicators (see figures 3-7 and 3-8). This generally shows that the percentage of cracked and patched slabs better captures the impacts of traffic loading on performance. As a result, this will serve as the primary performance indicator for the analyses presented in this chapter, with some additional analyses specifically considering the longitudinal and transverse cracking by location within the slab in conjunction with selected design and construction parameters. However, one performance trend of the IRI plot stands out, that of the general stability of the smoothness of the UBOL projects under increasing traffic loading.

3.4.1 UBOL

Most UBOL projects have performed very well, especially in terms of their overall ride quality (as shown in figure 3-7). For cracked and patched slabs, again many of the UBOL projects have performed admirably under heavy loading, but there have been others with less desirable distress states.

3.4.1.1 Interlayer Type

For the UBOL projects, several different interlayer types were used; these included:

• Existing HMA, using the existing underlying milled or unmilled HMA pavement.

Figure 3-8. ESALs versus percentage of cracked and patched slabs (* cracked slabs includes shattered slabs, longitudinal, transverse, diagonal, and corner cracking).

- A new HMA layer, 1 in thick.
- Geotextile material, in accordance with Section 506.20 of MoDOT's 2019 Standard Specifications for Highway Construction (MoDOT 2019b).

Figure 3-9 through 3-11 provide a comparison of cracked and patched slabs, longitudinal cracked slabs, and transverse cracked slabs, respectively, to interlayer type and UBOL design thickness. Figure 3-10 shows that most of the cracking distress present in the UBOL projects is longitudinal

most likely due to a lack of support in the outer portion of the driving lane. Generally, UBOL projects with geotextile interlayers exhibit less cracking than the existing or new HMA interlayer. Only two of the geotextile projects had cracking levels greater than 5%.

Figure 3-9. Interlayer type and slab thickness versus cracked and patched slabs for UBOL projects (* cracked slabs includes shattered slabs, longitudinal, transverse, diagonal, and corner cracking).

Figure 3-10. Interlayer type and slab thickness versus longitudinal cracked slabs for UBOL projects.

3.4.1.2 Thickness

MoDOT UBOL projects were designed with a thickness of either 8 or 9 in, with generally newer projects having the increased thickness. However, two projects (3E and 4E) on US 412 in Pemiscot County were designed with a 12 in thickness. Two other projects (25N and 25S) on I-435 in Jackson County were designed with a variable thickness between 8.5- and 11 in and are not included in any of the thickness graphs because of this variability.

Figure 3-12 shows cracking and patching as a function of design slab thickness. In general, much higher and variable cracking values are observed for the thinner 8-in slabs than for the others. Figure 3-13 presents a similar figure except this time using the mean as-constructed thickness from cores recorded in MoDOT's SiteManager database. The effect of the as-constructed thickness is not as clear, with two pavements with mean thickness values greater than 8.9 in also exhibiting more than 20% cracked and patched slabs. Figure 3-14 examines the thinner parts of these projects by looking at the as-constructed thickness minus one standard deviation. Figure 3-14 indicates that as-constructed thickness minus one standard deviation values greater than 8.6 in results in less cracked and patched slabs for UBOL projects.

Referring to figures 3-10 and 3-11, the increased slab thickness results in fewer slabs with longitudinal and transverse cracking, respectively.

Figure 3-12. Design slab thickness versus cracked and patched slabs for UBOL projects (* cracked slabs includes shattered slabs, longitudinal, transverse, diagonal, and corner cracking).

Figure 3-13. Mean as-constructed slab thickness versus cracked and patched slabs for UBOL projects (* cracked slabs includes shattered slabs, longitudinal, transverse, diagonal, and corner cracking).

Figure 3-14. As-constructed slab thickness minus one standard deviation versus cracked and patched slabs for UBOL projects (* cracked slabs includes shattered slabs, longitudinal, transverse, diagonal, and corner cracking).

3.4.1.3 Slab Geometry

All the UBOL projects had transverse joint spacings of 15 ft, while the slab widths varied from 12 to 14 ft. The effects of slab widths on slab cracking are shown in figures 3-15 through 3-17, with the additional factor of shoulder type included because PCC shoulders are expected to provide lateral edge support. Figure 3-15 through 3-17 indicate that the 14 ft wide slabs with HMA shoulders had greater cracking than other designs. This was especially true for longitudinal cracking as shown in figure 3-16. A lack of support on the outer part of the slab resulting in a cantilever effect may be contributing to this longitudinal cracking. The widened slabs with PCC shoulders did not display the same levels of distress, suggesting the positive benefits of the additional lateral support.

Figure 3-18 through 3-22 segregate the longitudinal cracking into five zones across the slab (as described in chapter 2): left joint, left wheelpath, center, right wheelpath, and right joint. As expected, most of the longitudinal cracking is in the center and right wheelpath of the slabs. Some of the longitudinal cracking as discussed earlier may be due to non-uniform support of widened lanes contributing to cracking in the right wheelpath.

Transverse cracking was also reviewed by segmenting the panel into five zones: bottom-joint, bottom, middle, top, and top-joint. Essentially all the transverse cracking was in the middle section of the slabs for the UBOL projects as shown in figure 3-23 through 3-27. Overall, little transverse cracking was observed on the UBOL projects, and no underlying pavement support issue was apparent in the distribution of transverse cracking.

3.4.1.4 Shoulder Type

MoDOT's UBOL projects were either constructed with HMA or PCC shoulders. PCC shoulders tend to have slightly better performance than HMA.

Figure 3-15. Slab thickness, slab width and shoulder type versus cracked and patched slabs for UBOL projects (* cracked slabs includes shattered slabs, longitudinal, transverse, diagonal, and corner cracking).

Figure 3-16. Slab thickness, slab width and shoulder type versus longitudinal cracked slabs for UBOL projects.

Figure 3-17. Slab thickness, slab width, and shoulder type versus transverse cracked slabs for UBOL projects.

Figure 3-18. Left joint—slab thickness, slab width and shoulder type versus longitudinal cracked slabs for UBOL projects.

Figure 3-19. Left wheelpath—slab thickness, slab width and shoulder type versus longitudinal cracked slabs for UBOL projects.

Figure 3-20. Center slab—slab thickness, slab width and shoulder type versus longitudinal cracked slabs for UBOL projects.

Figure 3-21. Right wheelpath—slab thickness, slab width and shoulder type versus longitudinal cracked slabs for UBOL projects.

Figure 3-22. Right joint—slab thickness, slab width and shoulder type versus longitudinal cracked slabs for UBOL projects.

Figure 3-23. Bottom–joint—transverse cracked slabs versus slab thickness, slab width, and interlayer for UBOL projects.

Figure 3-24. Bottom—transverse cracked slabs versus slab thickness, slab width, and interlayer for UBOL projects.

Figure 3-25. Middle—transverse cracked slabs versus slab thickness, slab width, and interlayer for UBOL projects.

Figure 3-26. Top—transverse cracked slabs versus slab thickness, slab width, and interlayer for UBOL projects.

Figure 3-27. Top-joint—transverse cracked slabs versus slab thickness, slab width, and interlayer for UBOL projects.

3.4.1.5 Underlying Pavement

Figure 3-28 shows the effect of the underlying pavement on the cracking performance of the UBOL projects, but without consideration of the sustained traffic loadings. UBOL over NRPCCP exhibited the highest amount of cracked and patched slabs, while overall UBOL over HMA pavement exhibited the least amount of cracked and patched slabs. The lower amounts of cracked and patched slabs for UBOL over RPCCP was somewhat unexpected, as RPCCP tend to have more cracking distress than NRPCCP, which would be expected to affect the performance of an overlay. Distress data for the underlying pavement prior to overlay was not available for analysis.

3.4.2 BBOL

BBOL projects exhibited mixed performance in term of both pavement smoothness and cracked and patched slabs, as shown previously in figures 3-7 and 3-8. The mean 2018 IRI for the BBOL projects was 131 in/mi, but 5 of the projects had values approaching or exceeding 200 in/mi. These higher IRI values were exhibited in spite of the fact that these projects had sustained lower traffic loadings (typically less than 5 million ESALs) than the UBOL counterparts. In terms of cracking performance, all BBOL projects exhibited cracking levels less than 10%, with the majority showing less than 5% cracking.

3.4.2.1 Interlayer Type

Like UBOL, BBOL projects included in this study were constructed using different interlayer types. These included:

Figure 3-28. Underlying pavement effect on cracked and patched slabs for UBOL projects (* cracked slabs includes shattered slabs, longitudinal, transverse, diagonal, and corner cracking).

- No interlayer, using the existing underlying HMA pavement.
- Geotextile.
- A new 1-in thick HMA layer was present on the UBOL project that was sawcut into a BBOL project (project 35N and 35S on I-35 in Daviess County). This project is identifiable in the following graphs as the 8 in thick BBOL slab thickness.

The effects of the interlayer type on cracking performance are shown in figure 3-29 through 3-31. Based on these results, there are no clear indications on the effects of interlayer.

3.4.2.2 Thickness

Ignoring the 8-in thick transformed BBOL project, generally the 6-in BBOL pavement designs performed slightly better in terms of cracked and patched slabs than the 5-in designs, as shown in figure 3-32. Figures 3-33 and 3-34 looks at the trends using the as constructed thickness and shows some benefits with minimum thickness greater than 5.5 in.

3.4.2.3 Slab Geometry

All the BBOL included in the study had 6-ft x 6-ft panels, so no further study of slab geometry was possible.

Figure 3-29. Interlayer type and slab thickness versus cracked and patched slabs for BBOL projects (* cracked slabs includes shattered slabs, longitudinal, transverse, diagonal, and corner cracking).

Figure 3-30. Interlayer type and slab thickness versus longitudinal cracked slabs for BBOL projects.

Figure 3-31. Interlayer type and slab thickness versus transverse cracked slabs for BBOL projects.

Figure 3-32. Design slab thickness versus cracked and patched slabs for BBOL projects (* cracked slabs includes shattered slabs, longitudinal, transverse, diagonal, and corner cracking).

Figure 3-33. As-constructed slab thickness versus cracked and patched slabs for BBOL projects.

Figure 3-34. As-constructed minus one standard deviation slab thickness versus cracked and patched slabs for BBOL projects (* cracked slabs includes shattered slabs, longitudinal, transverse, diagonal, and corner cracking).

3.4.2.4 Shoulder Type

BBOL projects were constructed with HMA, PCC, curb and gutter, and aggregate shoulders. Curb and gutter was combined with PCC shoulders for the analysis in this section as they are believed to contribute to the lateral support. The results of the cracking analysis are presented in figures 3-35 through 3-41. As seen from these figures, it is difficult to draw any clear conclusions on the effect of shoulders on the performance of the BBOL projects, largely due to the limited number of BBOL projects in each category and the generally low levels of cracking exhibited. And as noted previously, the 8-in project was a transformed UBOL project that became a BBOL after the slabs were sawed in half as part of a rehabilitation project.

Figures 3-37 and 3-38 present the longitudinal cracking in the left and right panels of the BBOL projects. Figures 3-40 and 3-41 present the transverse cracking in the left and right panels of the BBOL projects. Except for the 5.5-in thick BBOL project, there is little apparent difference in performance between the left and right panels.

3.4.2.5 Underlying Pavement

BBOL projects were constructed over HMA, RPCCP, and NRPCCP sections as shown in figure 3-42. Due to the limited data on sections constructed over RPCCP and NRPCCP, no definitive conclusions can be drawn.

Figure 3-35. Slab thickness and shoulder type versus cracked and patched slabs for BBOL projects.

Figure 3-36. Slab thickness and shoulder type versus longitudinal cracked slabs for BBOL projects.

Figure 3-37. Left panel—slab thickness and shoulder type versus longitudinal cracked slabs for BBOL projects.

Figure 3-38. Right panel—slab thickness and shoulder type versus longitudinal cracked slabs for BBOL projects.

Figure 3-39. Slab thickness and shoulder type versus transverse cracked slabs for BBOL projects.

Figure 3-40. Left panel—slab thickness and shoulder type versus transverse cracked slabs for BBOL projects.

Figure 3-41. Right panel—slab thickness and shoulder type versus transverse cracked slabs for BBOL projects.

Figure 3-42. Underlying pavement effect on cracked and patched slabs for BBOL projects (* cracked slabs includes shattered slabs, longitudinal, transverse, diagonal, and corner cracking).

3.4.3 BOL

BOL projects, like BBOL projects, produced mixed results in terms of both smoothness and cracked and patched slabs (see figures 3-7 and 3-8 presented previously). The smoothness issue can be related to construction factors (small projects, hand pours, utilities, complex longitudinal profiles, etc.) and the difficulty in measuring IRI in and around intersections where many of these were constructed. The mean 2018 IRI for the BOL projects was 263 in/mi, and all had carried less than 7 million ESALs.

For relatively newer projects that are generally exposed to lower traffic levels, 3 of the 6 projects exhibited cracking levels of 10% or greater (see figure 3-8). Part of this may be related to the intersection construction (e.g., complex longitudinal profiles) or could be an indication of poor bond between the overlay and the underlying HMA, meaning that the thin 4-in structure would be solely responsible for carrying the traffic loading.

3.4.3.1 Underlying Pavement and Interlayer Type

All BOL projects were constructed over HMA without an interlayer. Although no data were available on the condition or thickness of the underlying HMA layer, MoDOT staff indicated that some of these projects may have been milled down close to the base or subgrade layer to achieve the profile grade necessary for an overlay at an intersection.

3.4.3.2 Thickness and Slab Geometry

All BOL projects were constructed with a 4-in slab thickness and 4-ft x 4-ft panels. Asconstructed thickness data were not available for these projects.

3.4.3.3 Shoulder Type

The shoulder type was the only design feature that differed between the BOL projects in this study. BOL projects were constructed with HMA, PCC, or curb and gutter as shoulders. Curb and gutter were combined with PCC shoulders for analysis as they provide lateral support to the mainline pavement. Figure 3-44 through 3-51 examine longitudinal and transverse cracking by panel location. Essentially all the longitudinal and transverse cracking is contained in the right panel of the BOL projects.

Figure 3-43. Shoulder type versus cracked and patched slabs for BOL projects (* cracked slabs includes shattered slabs, longitudinal, transverse, diagonal, and corner cracking).

Figure 3-44. Shoulder type versus longitudinal cracked slabs for BOL projects.

Figure 3-45. Left panel—shoulder type versus longitudinal cracked slabs for BOL projects.

Figure 3-46. Center panel—shoulder type versus longitudinal cracked slabs for BOL projects.

Figure 3-47. Right panel—shoulder type versus longitudinal cracked slabs for BOL projects.

Figure 3-48. Shoulder type versus transverse cracked slabs for BOL projects.

Figure 3-49. Left panel—shoulder type versus transverse cracked slabs for BOL projects.

Figure 3-50. Center panel—shoulder type versus transverse cracked slabs for BOL projects.

Figure 3-51. Right panel—shoulder type versus transverse cracked slabs for BOL projects.

3.5 Series IRI Data

3.5.1 Time Series IRI Data

Figure 3-52 through 3-55 provide examples of the time-series IRI data collected by MoDOT for selected UBOL, BBOL, and BOL projects. As discussed in Chapter 2, the UBOL projects that were constructed with low IRI values have generally maintained those values over time, whereas the BBOL and BOL projects have developed more roughness over their service life. Figure 3-54 provides an example illustration of the anomalies occasionally encountered in some of the data, with a high initial value (possibly the result of being measured pre-overlay) and a spike occurring several years after construction. The complete set of time-series IRI graphs is contained in Appendix F.

3.5.2 IRI Data Along Projects

Figures 3-56 and 3-57 present example plots of spatial IRI for selected projects and for individual years. Localized areas of roughness are visible in these graphs, but no trend was apparent from a review of these graphs. Individual wheelpath IRI values were also reviewed, with the expectation that the right wheelpath would produce higher IRI values. Although that was observed on many of the projects, it was not a consistent finding.

Figure 3-52. IRI time-series data for project 2S, I-55 UBOL in Pemiscot County.

Figure 3-53. IRI time-series data for project 28S, US 61 BBOL in Jefferson/Ste. Genevieve County.

Figure 3-54. IRI time-series data for project 38N, MO 291 BOL in Jackson County.

Figure 3-55. IRI time-series data for project 38S, MO 291 BOL in Jackson County.

Figure 3-56. 2018 IRI along project for project 2S, I-55 UBOL in Pemiscot County (the horizontal line is the average IRI for the project and the stepped line is the average IRI for 0.1-mi segments).

3.6 Current Repair Needs

One of the objectives for the study was to estimate the current rehabilitation and maintenance needs for each project. This section provides a summary of global needs for patching and rehabilitation of the concrete overlay projects. The summary is not a design level approach, but rather a planning level, scoping approach to the rehabilitation and maintenance needs of the concrete overlay projects. There are several limitations to the estimate, including the fact that it is based largely on visible distress data (from a limited video survey) without benefit of any supplementary testing data (e.g., deflection, coring), and the distress data are available only for one lane of the pavement (as described in section 2.6 ARAN Video Distress Data).

3.6.1 Patching

Table 3-4 provides a summary of the estimated patching for the UBOL projects. The type of patching applied is based on the following criteria:

- Full-depth repair (FDR).
 - High-severity patching.
 - High-severity transverse cracks.
 - High-severity corner breaks.
 - Shattered slabs.
- Partial-depth repair (PDR).
 - High-severity spalling.

To estimate FDR quantities, the following assumptions were used:

- Shattered slabs require a full slab replacement.
- High-severity patched slabs require a full slab replacement.
- High-severity transverse cracks require a full-depth patch 6 ft long for the full width of the slab.
- High-severity corner breaks require a 3-ft x 3-ft full-depth patch.

To estimate PDR quantities, it is assumed that high severity spalls require a 3-ft x 3-ft partialdepth patch.

Project 20N has the highest level of estimated patching needs at slightly under 6%. All the other UBOL projects were well under 1% patching except for project 9E at 1.778%.

Table 3-5 and 3-6 provide similar patching estimates for the BBOL and BOL projects. No partial-depth patching is provided for BBOL and BOL projects due to the thickness of the overlays. Also, all patching is assumed to be full panels due to the panel size of these overlays. All the projects had estimated patching quantities less than 1%.

3.6.2 Rehabilitation

As discussed previously, patching can be used to resolve many of the surficial distresses that develop in concrete overlays. For projects with more extensive distresses or ride quality issues, more significant rehabilitation—in the form of overlays or diamond grinding—may be a more cost-effective treatment.

U.ID.	Total PDR Area, ft ²	otal PDRTotal PDR,Total FDRArea, ft2% of Total AreaArea, ft2		Total FDR, % of Total Area
1W	108	108 0.04%		0.00%
2S	9	0.00%	378	0.04%
3E	0	0.00%	0	0.00%
4E	0	0.00%	0	0.00%
5N	0	0.00%	180	0.08%
5S	18	0.01%	792	0.35%
6N	0	0.00%	0	0.00%
6S	0	0.00%	0	0.00%
7E	NA	NA	NA	NA
7W	NA	NA	NA	NA
8E	0	0.00%	0	0.00%
8W	0	0.00%	0	0.00%
9E	27	0.00%	10251	1.78%
10E	0	0.00%	84	0.01%
11E	126	0.03%	993	0.21%
12E	81	0.03%	1350	0.48%
13W	9	0.00%	248.4	0.11%
14S	144	0.02%	1026	0.12%
15E	0	0.00%	0	0.00%
15W	0	0.00%	0	0.00%
16N	9	0.00%	0	0.00%
17W	99	0.02%	3681	0.67%
18N	0	0.00%	0	0.00%
19N	36	0.00%	2028	0.20%
20N	27	0.01%	26136	5.87%
20S	0	0.00%	2700	0.60%
21N	9	0.00%	9	0.00%
21S	0	0.00%	9	0.00%
22E	9	0.00%	0	0.00%
22W	0	0.00%	0	0.00%
23W	18	0.00%	0	0.00%
24N	0	0.00%	0	0.00%
25N	0	0.00%	0	0.00%
258	0	0.00%	0	0.00%
26N	NA	NA	NA	NA
26S	NA	NA	NA	NA

Table 3-4. UBOI	estimated	current	patching	needs.
-----------------	-----------	---------	----------	--------

U.ID.	Total FDR Area, ft ²	Total FDR, % of Total Area
27S	72	0.04%
27N	NA	NA
28S	1,584	0.19%
28N	NA	NA
29E	2,592	0.57%
30N	180	0.04%
30S	NA	NA
31S	NA	NA
32W	0	0.00%
33E	0	0.00%
33W	36	0.16%
33S	0	0.00%
33N	NA	NA
34E	NA	NA
34W	36	0.63%
34S	NA	NA
34N	36	0.71%
35N	720	0.14%
358	936	0.16%

 Table 3-5.
 BBOL estimated current patching needs.

 Table 3-6. BOL estimated current patching needs.

U.ID.	Total FDR Area, ft ²	Total FDR, % of Total Area
36S	NA	NA
36N	16	0.35%
37S	16	0.42%
37N	NA	NA
38N	0	0.00%
38S	16	0.13%
39W	256	1.00%
39E	NA	NA
40W	NA	NA
41W	0	0.00%
41E	NA	NA

3.6.2.1 Overlays

There are no hard and fast rules for when a structural overlay is justified versus patching for concrete overlays. All but two of the concrete overlay projects have FDR patching percentages estimated at less than 1 percent of the lane where the distress was measured. For the two projects that do exceed the 1 percent FDR, it is recommended that before extensive patching is conducted on those projects, MoDOT conduct an economic and performance analysis of the pavement structures to determine if a structural overlay may be a more appropriate treatment. Those two projects are 9E (located on Interstate 44 eastbound in Crawford County between log mile 252.490 and 257.218) and 20N (located on Interstate 35 in Clinton County between log mile 41.320 and 49.152).

3.6.2.2 Grinding

Grinding of concrete pavements or overlays are usually reserved for those projects that have developed an uncomfortable ride for the traveling public. Criteria for considering diamond grinding as a preservation treatment is commonly based on some general guidelines such as (Smith et al. 2014):

- Average transverse joint faulting more than 0.08 in.
- Roughness as measured by IRI more than 160–220 in/mi.
- Wheelpath wear greater than 0.25–0.40 in.
- Surface friction values below agency standards for the roadway facility and location.
- As required in noise sensitive areas.

No project in this study exceeded the average faulting threshold listed above, while four BBOL projects and six BOL projects exceeded the IRI threshold of 160 in/mi. While the BOL projects resulted in the highest recorded IRI values, many of these are shorter, intersection projects making both construction and accurately measuring IRI difficult. Grinding on these projects may have limited benefits to the public. Furthermore, grinding of the four BBOL projects may not be advisable given the relative thinness of the slabs.

CHAPTER 4. IMPLEMENTATION RECOMMENDATIONS AND FUTURE RESEARCH

4.1 Introduction

The goal of this study was to review and evaluate the performance of bonded and unbonded overlays constructed in Missouri as a first step in documenting their performance and working to improve MoDOT's overall concrete overlay selection, design, and construction procedures. Based on some of the observations of performance described in Chapter 3, the following sections present general recommendations for consideration by MoDOT in advancing concrete overlay technologies.

4.2 Improve Concrete Overlay Performance in Missouri

4.2.1 MoDOT Should Revise UBOL and BBOL Design Thickness Procedures to be Site Specific.

MoDOT historically has designed UBOL and BBOL pavements by policy. UBOL pavements had an 8-in slab thickness in the past, but more recent UBOL projects were constructed 9 in thick for higher volume overlays (Donahue 2017; Trautman 2017). For BBOL pavements, policy design thickness varied from 5 to 6 in. It is recommended that MoDOT use their mechanistic pavement design methodology to conduct site specific designs, considering traffic, climate, underlying pavement condition and support, and local materials in the thickness design for UBOL and BBOL pavements.

4.2.2 MoDOT Should Revise UBOL and BBOL Thickness Construction Quality Control Practices to Better Control Minimum Thickness.

Since concrete overlays are thinner than conventional new concrete pavement construction, they are more sensitive to deviations in the as-constructed thickness. MoDOT's PWL specification for thickness is based on the design thickness minus 0.5 in and the minimum thickness specification is the design thickness less 10%. It is recommended that MoDOT revise their specifications and practices that control as-constructed concrete overlay thickness considering the following:

- Figure 3-14 demonstrated that an as-constructed thickness minus one standard deviation greater than 8.6 in produced lower cracking and patching for UBOL pavements.
- For BBOL projects (see figure 3-34) there is not a clear recommendation, but the asconstructed thickness minus one standard deviation greater than 5.5 in did appear to produce better performance.

In general, nominal increases in slab thickness are known to not only increase the load-carrying capabilities, but also can help reduce some of the degree of risk associated with marginal or sensitive designs.

4.2.3 MoDOT Should Continue the Use of Geotextiles Interlayers as They Appear to Provide Better Performance for UBOL Projects.

Figure 3-9 through 3-11 indicate that UBOL projects with a geotextile interlayer provide better performance than HMA interlayers. This recommendation concurs with MoDOT's current practice of using geotextile (Donahue 2017; Trautman 2017).

4.3 Recommendations for Additional Research

4.3.1 Forensic Investigations.

The work done under this project was a first step in collecting and compiling the design, construction, and performance data for MoDOT's concrete overlay projects, but the information was limited to what could be obtained from records and video surveys. Thus, initiating a research project including forensic investigations into the various types of overlays would be helpful to help better document:

- Condition of underlying pavement and base at time of overlay.
- Material properties of underlying pavement and base.
- Thickness of underlying pavement and base, especially for BOL projects.
- Material properties of the interlayer and overlay.

As described above, this current study had a limited scope and budget and was constrained by data availability that could be overcome with record searches and pavement coring and testing. An example of where forensics would have been beneficial was the underlying pavement and base support for UBOL projects. UBOL projects constructed over reinforced concrete pavement displayed the best performance, which is somewhat counterintuitive. The expectation is that the average reinforced concrete would be in a poorer condition than a nonreinforced concrete pavement, but the pre-overlay condition was not available.

A smaller forensics project could be limited to an investigation of the good and poor performing overlays to see what useful information could be extracted. There were several poor performing projects that available data provided no apparent reason for the performance.

4.3.2 Evaluate Additional Engineering for BOL Projects to Ensure Underlying Pavement and Base Support and Profile.

Many of the BOL projects had much higher IRI values than the UBOL or BBOL projects. In most cases this is due both to the difficulties constructing intersections and measuring IRI in and around intersections. MoDOT staff indicated that there were instances where the BOL may not have adequate underlying pavement and base support due to milling the underlying HMA to meet profile. Work done by Mateos et al. (2019) recommends to only use BCOA when there is a minimum of 3 in of underlying HMA, a recommendation that matches MoDOT's current specification in Section 506.10.1 (MoDOT 2019b). Mateos et al. (2019) further recommends that thin BCOA (4 in) only be used where the underlying HMA pavement thickness exceeded 3 in and is structurally sound.

MoDOT may consider additional engineering investment and using tools such as LIDAR and ground penetrating radar to provide better support and profiles for BOL projects and reduce the risk of premature failure.

4.3.3 Additional Research on the Failure Mode for BOL Projects.

The research could determine the cause of cracking and patching that was predominantly located in the right panel for the projects reviewed. Also, could additional or different fibers be used to mitigate the cracking potential of this type of overlay.

4.3.4 Additional Research to Optimize the Design and Selection of Geotextiles for Interlayers.

The research could review geotextile selection and application to improve the performance of concrete overlays.

CHAPTER 5. SUMMARY AND CONCLUSIONS

The goal of this study was to review and evaluate the performance of bonded and unbonded overlays constructed in Missouri as a first step in documenting their performance and working to improve MoDOT's overall concrete overlay selection, design, and construction procedures. To accomplish this goal the following objectives were established:

- Inventory the routes and locations of the concrete overlays as detailed in the plans or from virtual site visits via review of ARAN videos and data. The completed inventory should include the travelway ID, direction, route, county, log limits of overlay section, lane number, type of interlayer (if applicable), and other identifying information. MoDOT furnished all of the relevant inventory data.
- Document the thickness of each concrete overlay project, along with the air content and compressive strength, by pulling information from AASHTOWare Project SiteManager QC/QA data or other Construction and Materials records, as available.
- Tabulate the performance histories of the concrete overlays using data from the MoDOT Transportation Management System (TMS) database.
- Review the latest year of video from ARAN and document visible cracking along with patching and maintenance performed on the pavement.
- Estimate the current rehabilitation and maintenance requirements for each project.
- Identify any correlations between the condition/distress of the pavement and key project construction/materials data, including the type of interlayer (where applicable).
- Identify whether coring and construction data correspond with information shown on the construction plans.

Overall, most of the overlays included in this research project are performing well, especially when considering the excellent ride quality of the UBOL projects. The BBOL and BOL projects exhibited increased IRI values and cracking and patching compared to UBOL projects.

Although the presence of several confounding variables (e.g., slab thickness, interlayer type, slab width, shoulder type, and traffic loadings) often hindered performance comparisons, some of the key observations from a review of the performance data are listed below and summarized in table 5-1:

- The 2018 reported IRI data shows the UBOL projects providing a very smooth ride with a mean IRI of 64 in/mi. BBOL and BOL projects tend to exhibit much higher mean IRI values (131 in/mi and 263 in/mi, respectively) than the UBOL projects. This is certainly to be expected with the BOL projects as these are shorter and are often located at intersections, meaning that the construction of the pavement was likely done using forms and with significant hand work and the ensuing IRI measurements more sensitive to a few deviations (such as might be encountered with complex longitudinal profiles).
- Cracked and patched slabs were found to be a more reliable indicator of performance than IRI for the overlay projects and is used as the performance indicator in the following bullets.

Overlay Type	Performance Observations	Construction QA/QC Data	Effect of Design Features
UBOL (0.9 to 26.6 million ESALs)	 Observed distresses: transverse and longitudinal cracking Percent cracked and patched slabs range = 0 to 32% Predominant distress: longitudinal cracking, occurring predominantly in the middle or right wheelpath (very little transverse cracking) IRI values low and stable over time. 2018 mean IRI = 64 in/mi 2018 range = 36 to 114 in/mi Negligible faulting 	 For slab thickness, PWL values below 90% generally show higher levels of distress For concrete strength, PWL values did not show a clear relationship to performance. Strength values were generally above 90%, indicating that adequate strength is not an issue for concrete overlay projects. For concrete air content, PWL values did not show a clear relationship to performance. 	 Slab thickness: UBOL projects with design thickness of 8 in exhibit higher and more variable cracking. An as-constructed thickness minus one standard deviation value greater than 8.6 in results in less cracking. Slab Width/Shoulder: UBOL projects with 14-ft wide slabs and HMA shoulders exhibited higher levels of longitudinal cracking UBOL projects with PCC shoulders exhibited less longitudinal cracking than those with HMA shoulders Interlayer/Underlying Pavement: UBOL projects with geotextile interlayers exhibit less cracking than those using an existing or new HMA interlayer.
BBOL (0.2 to 2.8 million ESALs)	 Observed distresses: transverse, longitudinal cracking, corner breaks, and shattered slabs. Percent cracked and patched slabs range = 0 to 6% (not including project 35N and 35S, modified UBOL) Predominant distress: longitudinal cracking, most commonly occurring in the right panel of the slab. IRI values relatively high. 2018 mean IRI = 131 in/mi 2018 IRI range = 43 to 284 in/mi Negligible faulting 	 For slab thickness, PWL values below 90% generally show higher levels of distress For concrete strength, PWL values did not show a clear relationship to performance. Strength values were generally above 90%, indicating that adequate strength is not an issue for concrete overlay projects. For concrete air content, PWL values did not show a clear relationship to performance. 	 Slab thickness: BBOL projects with 6-in design slab thickness exhibited less cracking than the 5 and 5.5-in thick designs. A minimum as-constructed thickness of 5.5 in resulted in less cracking. Slab Geometry: No conclusions on slab geometry (all designs included 6-ft by 6-ft panels). Shoulder Type: No definitive conclusions on effect of shoulder type. Underlying Pavement. No definitive conclusions on effect of underlying pavement type.
BOL (0.4 to 5.8 million ESALs)	 Observed distresses: transverse, longitudinal, and corner cracking Percent cracked and patched slabs range = 0 to 25% Predominant distress: longitudinal and corner cracking, occurring predominantly in the right panel Significant cracking on 3 of 6 projects despite lower traffic IRI values high and variable. 2018 mean IRI = 263 in/mi 2018 IRI range = 118 to 443 in/mi Negligible faulting 	• QA/QC results were not available for the BOL projects.	 Slab Thickness: No conclusions on slab thickness (all designs were 4 in thick). Slab Geometry: No conclusions on slab geometry (all designs included 4-ft by 4-ft panels). Shoulder Type: No definitive conclusions (only 6 projects.

Table 5-1. MoDOT concrete overlay summary.

- Figures 3-1 and 3-2 does show an apparent relationship between as-constructed thickness PWL and the performance of UBOL and BBOL projects. PWL values below 90% generally show a higher level of cracked and patched slabs, suggesting that achieving the design thickness of a concrete overlay is one important factor influencing performance.
- The PWL for strength and air content did not show a clear relationship to concrete overlay performance. Strength PWL values were generally above 90%, indicating that achieving adequate concrete strength is not an issue for concrete overlay projects.
- UBOL projects with geotextile interlayers exhibit less cracking than those using an existing or new HMA interlayer.
- Figure 3-12 shows much higher and variable cracking values for the UBOL slabs with a design thickness of 8 in. Figure 3-14 indicates that as-constructed thickness minus one standard deviation values greater than 8.6 in results in less cracked and patched slabs for UBOL projects.
- UBOL projects with 14 ft wide slabs and HMA shoulders exhibit higher levels of longitudinal cracking than other designs. The widened slabs with PCC shoulders did not display as much cracking as the HMA shouldered projects.
- The most predominant type of cracking on UBOL overlays was longitudinal, and likely the result of a lack of support in the outer portion of the driving lane. Most of the longitudinal cracking in UBOL projects occurred in the middle or right wheelpath zone of the slab.
- UBOL projects constructed with PCC shoulders displayed less longitudinal cracking than those with HMA shoulders.
- The most common distresses for BBOL projects were longitudinal cracking and shattered slabs.
- BBOL projects with a 6 in design slab thickness exhibited less cracking than the 5 and 5.5 in thick designs. A 5.5 in minimum as-constructed thickness resulted in less cracking.
- Predominant distresses for BOL projects were longitudinal and corner cracking. Essentially all the longitudinal, transverse, and corner cracking is contained in the right panel of the BOL projects.

Based on the observed performance trends, the following items are recommended to improve concrete overlay performance in Missouri. UBOL projects provided more complete information, and there was more diversity in some of the design parameters that allowed for more recommendations. BOL projects had the most limited data.

- MoDOT should revise UBOL and BBOL design thickness procedures to be site specific, building on their mechanistic design procedure for pavements.
- MoDOT should revise UBOL and BBOL thickness construction quality control practices to better control minimum thickness due to the sensitivity of concrete overlays to as-constructed thickness.
- MoDOT should continue the use of geotextiles interlayers as they appear to provide better performance for UBOL projects.

The following research to improve concrete overlay performance is recommended:

- Forensics—MoDOT should consider additional field and records forensics to:
 - Determine the condition of the underlying pavement at the time of overlay.
 - Investigate good and poor performing concrete overlays to determine key design or construction parameters.
- Additional engineering for BOL projects to improve ride and underlying pavement and base support.
- Additional research on the failure mode for BOL projects. The research could determine the cause of cracking and patching that was predominantly located in the right panel for the projects reviewed. Also, could additional or different fibers be used to mitigate the cracking potential of this type of overlay.
- Additional research to optimize the design and selection of geotextiles for interlayers. The research could review geotextile selection and application to improve the performance of concrete overlays.

REFERENCES

- American Association of State Highway and Transportation Officials (AASHTO). 1993. *Guide for Design of Pavement Structures*. American Association of State Highway and Transportation Officials, Washington, DC.
- Burati, J., R. Weed, C. Hughes, H. Hill. 2002. *Optimal Procedures for Quality Assurance Specifications*. FHWA-RD-02-095. Federal Highway Administration, McLean, VA.
- Donahue, J. 2017. "Concrete Overlay Performance Updates." 38th Nebraska Concrete Paving Workshop. Nebraska Concrete Paving Association, Lincoln, NE.
- Federal Highway Administration (FHWA). 2018. <u>Highway Statistics 2018</u>. "State Highway Agency-Owned Public Roads - 2018 Rural and Urban Miles; Estimated Lane-Miles and Daily Travel, HM-81." Federal Highway Administration, Washington, DC.
- Harrington, D. and G. Fick. 2014. Guide to Concrete Overlays: Sustainable Solutions for Resurfacing and Rehabilitating Existing Pavements (3rd edition). National Concrete Pavement Technology Center, Institute for Transportation, Iowa State University, Ames, IA 50010-8664
- Mateos, A., J. Harvey, F. Paniagua, J. Paniagua, and R. Wu. 2019. *Development of Improved Guidelines and Designs for Thin BCOA: Summary, Conclusions, and Recommendations.* UCPRC-SR-2018-01. California Department of Transportation, Sacramento, CA.
- Miller, J., and W. Bellinger. 2014. *Distress Identification Manual for the Long-Term Pavement Performance Program (Fifth Revised Edition).* FHWA-HRT-13-092. Federal Highway Administration, Washington, DC.
- Missouri Department of Transportation (MoDOT). 2016a. <u>*Data Zone*</u>. Missouri Department of Transportation, Jefferson City, MO.
- Missouri Department of Transportation (MoDOT). 2016b. <u>Data Zone Training Manual</u>, <u>Pavement Statistics by Year</u>. Missouri Department of Transportation, Jefferson City, MO.
- Missouri Department of Transportation (MoDOT). 2019a. <u>MoDOT ARAN Viewer</u>. Missouri Department of Transportation, Jefferson City, MO.
- Missouri Department of Transportation (MoDOT). 2019b. 2019 <u>Standard Specifications for</u> <u>Highway Construction</u>. Missouri Department of Transportation, Jefferson City, MO.
- Missouri Department of Transportation (MoDOT). 2020. 2020 <u>Missouri Standard Plans for</u> <u>Highway Construction</u>. Missouri Department of Transportation, Jefferson City, MO.
- Richardson, D., S. Lusher, A. Boeckmann, and R. Luna. 2015. MoDOT Pavement Preservation Research Program. Volume II, Data Collection for Pavement Management: Historical Data Mining and Production of Data. CMR 16-004. Missouri Department of Transportation, Jefferson City, MO.

- Smith, K., D. Harrington, L. Pierce, P. Ram, and K. Smith. 2014. Concrete Pavement Preservation Guide, Second Edition. FHWA-HIF-14-014. Federal Highway Administration, Washington, DC.
- Trautman, B. 2017. "<u>Workshop #3 Unbonded Concrete Overlays</u>." *National Road Research Alliance Pavement Conference*. Minnesota Department of Transportation, St. Paul, MN.
- Walker, D. 2015. *Pavement Surface Evaluation and Rating, PASER Manual—Concrete Roads.* Transportation Information Center, University of Wisconsin-Madison, Madison, WI.

No.	Trawy ID	DIR	Desg	Route	County	Begin Log	End Log	Job Number	Comp. Date	Contract ID	Туре
1	10	WB	IS	44	Webster/Greene	194.696	200.67	J8I0633	2000	F.A.I44-2(181)	UBOL
2	13	SB	IS	55	Pemiscot	193.053	208.152	J0I0833	2002	011214-X02	UBOL
3	1100	EB	US	412	Pemiscot	29.545	37.433	J0P0600D	2003	011214-X04	UBOL
4	1100	EB	US	412	Pemiscot	27.849	29.56	J0P0600/600E	2003	?	UBOL
5	6512	NB	IS	255	St. Louis	0	3.75	J6I1486	2003	030221-601	UBOL
5	6513	SB	IS	255	St. Louis	0	3.75	J6I1486	2003	030221-601	UBOL
6	6040	NB	МО	291	Jackson	15.343	16.927	J4P1421	2004	030221-405	UBOL
6	6041	SB	МО	291	Jackson	32.498	34.075	J4P1421	2004	030221-405	UBOL
7	9	EB	IS	44	Lawrence	33.032	37.736	J7I0721	2005	040917-701	UBOL
7	10	WB	IS	44	Lawrence	252.49	257.218	J7I0721	2005	040917-701	UBOL
7R	9	EB	IS	44	Lawrence	33.032	37.736		2018	Replaced Drive Lanes of Previous Overlay	UBOL
7R	10	WB	IS	44	Lawrence	252.49	257.218		2018	Replaced Drive Lanes of Previous Overlay	UBOL
8	9	EB	IS	44	Crawford	204.608	213.567	J9I0509	2005	040917-901	UBOL
9	3560	EB	US	36	Macon	108.959	120.11	J2P0726	2005	040618-201	UBOL
10	9	EB	IS	44	Laclede	134	145.282	J8I0747, J8I0748	2006	051118-803	UBOL
11	1101	WB	US	412	Dunklin	22.8	27	J0P0570	2006	051118-X02	UBOL
12	263	SB	IS	57	Mississippi	0.276	12.747	J0I0973	2007	070330-X01	UBOL
13	6372	EB	IS	64	St. Louis/St. Louis City	27.45	36.58	J610978	2007	Design Build	UBOL
13	6373	WB	IS	64	St. Louis/St. Louis City	4.21	13.35	J6I0978	2007	Design Build	UBOL
14	264	NB	IS	57	Mississippi	13.032	21.925	J0I0983	2009	090123-X01	UBOL
15	10	WB	IS	44	Phelps	105.653	113.884	J9I2166	2009	090424-901	UBOL
16	12	NB	IS	55	Cape/Perry	105	108	J0I2200	2010	091218-X01	UBOL
17	12	NB	IS	55	Pemiscot	0	15.068	J0I2171	2010	090424-X02	UBOL
18	4984	NB	IS	35	Clinton	41.32	49.152	J1I1040	2010	090120-101	UBOL
18	4986	SB	IS	35	Clinton	65.282	73.115	J1I1040	2010	090120-101	UBOL
19	4984	NB	IS	35	Clay	24.843	33.053	J4I1382	2010	091218-408	UBOL
19	4986	SB	IS	35	Clay	81.391	89.6	J4I1382	2010	091218-408	UBOL
20	9	EB	IS	44	Franklin	251.484	256.562	J6I2011	2010	090626-604	UBOL

APPENDIX A—MODOT CONCRETE OVERLAY INVENTORY

No.	Trawy ID	DIR	Desg	Route	County	Begin Log	End Log	Job Number	Comp. Date	Contract ID	Туре
20	10	WB	IS	44	Franklin	33.632	38.717	J6I2011	2010	090626-604	UBOL
21	10	WB	IS	44	Pulaski	127.879	136.082	J9I2149	2011	101022-805	UBOL
22	12	NB	IS	55	Pemiscot	15.08	18.68	J9P2244B	2015	150123-H02	UBOL
23	6039	NB	IS	435	Jackson	0.045	3.345	J4I2337	2019	171201-C01	UBOL
23	6042	SB	IS	435	Jackson	51.789	55.102	J4I2337	2019	171201-C01	UBOL
24	4984	NB	IS	I-35	Davies	68.886	78.477	J1I0895	2006	051118-104	UBOL
24	4986	SB	IS	I-35	Davies	35.973	45.521	J1I0895	2006	051118-104	UBOL
24R	4984	NB	IS	I-35	Davies	68.886	78.477	J1I2221	2013	130125-A01 Rehab. of Previous Project	UBOL
24R	4986	SB	IS	I-35	Davies	35.973	45.521	J1I2221	2013	130125-A01 Rehab. of Previous Project	UBOL
1	6102	SB	RT	D	Cass	0.051	3.131	J4S2246	2008	080523-412	BBOL
1	6103	NB	RT	D	Cass	23.095	26.175	J4S2246	2008	080523-412	BBOL
2	11	SB	US	61	Jefferson/St. Gen	200.738	213.576	J6S1961	2009	081024-601	BBOL
2	7773	NB	US	61	Jefferson/St. Gen	179.479	182.444	J6S1961	2009	081024-601	BBOL
3	3560	EB	US	36	Shelby/Marion	162.176	169.428	J3P0792B	2010	100514-302	BBOL
4	6365	NB	МО	79	Marion/Ralls	78.5	86.232	J3P2193	2013	130222-B01	BBOL
4	6366	SB	МО	79	Marion/Ralls	1.721	9.453	J3P2193	2013	130222-B01	BBOL
5	1975	SB	МО	5	Laclede	249.98	250	J5P2237B	2014	131122-D09	BBOL
6	6142	WB	МО	340	St. Louis	9.96	10.03	J5P2237B	2014	131122-D09	BBOL
7	1100	EB	US	412	Dunklin	26.88	27.26	J9S3010	2016	150515-Н07	BBOL
7	1101	WB	US	412	Dunklin	23.53	23.88	J9S3010	2016	150515-Н07	BBOL
8	11	SB	US	61	Scott	318.33	318.51	J9S3010	2016	150515-Н07	BBOL
8	7773	NB	US	61	Scott	74.56	74.72	J9S3010	2016	150515-Н07	BBOL
9	3534	EB	US	24	Randolph	135.4	135.51	J2P0779C	2010	100122-202	BBOL
9	3533	WB	US	24	Randolph	80.26	80.36	J2P0779C	2010	100122-202	BBOL
9	3534	SB	BUS	63	Randolph	1.03	1.11	J2P0779C	2010	100122-202	BBOL
9	3533	NB	BUS	63	Randolph	8.47	8.55	J2P0779C	2010	100122-202	BBOL
41	4984	NB		I-35	Davies			J1I0895	2006	051118-104 (See UBOL list)	BBOL
41	4986	SB		I-35	Davies			J110895	2006	051118-104 (See UBOL list)	BBOL
1	1975	SB	МО	5	Laclede	250.52	250.59		2003		BOL

Evaluating	Performance	of Concrete	Overlays for	Pavement	Rehabilitation
Lvalualing	renomance		Overlays IUI	ravement	Nenapintation

No.	Trawy ID	DIR	Desg	Route	County	Begin Log	End Log	Job Number	Comp. Date	Contract ID	Туре
1	1976	NB	МО	5	Laclede	102.16	102.22		2003		BOL
2	54	SB	МО	19	Ralls	8.411	8.48	J3P2152	2012	120120-В02	BOL
2	55	NB	МО	19	Ralls	254.32	254.4	J3P2152	2012	120120-В02	BOL
3	6041	NB	МО	291	Jackson	30.05	30.23	J4P1513	2003	030321-?	BOL
3	6040	SB	МО	291	Jackson	19.1	19.31	J4P1513	2003	030321-?	BOL
4	7783	WB	US	60	Newton	328.07	329.2	J7P0683	1999	?	BOL
4	7782	EB	US	60	Newton	11.57	12.7	J7P0683	1999	?	BOL
5	1029	WB	МО	34	Cape Girardeau	14.25	14.85	J0U0598C	2009	080229-X02	BOL
6	1978	WB	МО	14	Christian	94.91	94.96	J8P0878C	2008	080425-803	BOL
6	1977	EB	МО	14	Christian	24.949	24.983	J8P0878C	2008	080425-803	BOL
7			BUS	13	Stone			NA	2008	Internal Maintenance	BOL
Evaluating Performance of Concrete Overlays for Pavement Rehabilitation

APPENDIX B—DESIGN INFORMATION

U.D	No	Twid	Dir	Desg	Route	County	Overlay Type	Construction Date	Job.No	Contract.ID	Revised Log.mi Start	Revised Log.mi End	Year of Log.mi	Number of Lanes	Joint Spacing, ft	Slab Width, ft	Slab Thickness, in	Sealed Joints	Dowels	Interlayer Type	Interlayer Thickness, in	Under Pavement	Under Pavement Thickness, in	Under Pavement Age	Base Type	Base Thickness, in	Shoulder Type	Comments
1W	1	10	WB	IS	44	Webster/ Greene	UBOL	2000	J8I0633	F.A.I44-2(181)	197.717	203.576	2018	2	15	12	8	YES	1.25 in	HMA	1	RPCCP	9	1969-1970	Type 3 Aggregate	4	PCC, Tied	-
2S	2	13	SB	IS	55	Pemiscot	UBOL	2002	J0I0833	011214-X02	193.100	208.123	2018	2	15	12	9	YES	1.25 in	HMA	1	ACP	VAR	NA	Aggregate	4	PCC	-
3E	3	1100	EB	US	412	Pemiscot	UBOL	2003	J0P0600D	011214-X04	29.457	37.433	2018	2	15	13.8	12	YES	1.25 in	НМА	1	НМА	NA	NA	NA	NA	PCC, Tied	Project in metric
4E	4	1100	EB	US	412	Pemiscot	UBOL	2003	J0P0600/	031114-X02	27.849	29.560	2018	2	15	13.8	12	YES	1.25 in	НМА	1	НМА	NA	NA	NA	NA	PCC, Tied	Project in metric
5N	5	6512	NB	IS	255	St. Louis	UBOL	2003	J6I1486	030221-601	0.323	3.750	2018	3	15	12	8	YES	1.25 in	HMA	1	RPCCP	NA	NA	NA	NA	PCC,	-
5S	5	6513	SB	IS	255	St. Louis	UBOL	2003	J6I1486	030221-601	0.000	3.660	2018	3	15	12	8	YES	1.25 in	HMA	1	RPCCP	NA	NA	NA	NA	PCC,	-
6N	6	6040	NB	МО	291	Jackson	UBOL	2004	J4P1421	030221-405	15.343	16.772	2018	2	15	12	8	YES	1.25 in	HMA	1	NRPCCP	10	NA	Type 3	4	PCC	-
6S	6	6041	SB	МО	291	Jackson	UBOL	2004	J4P1421	030221-405	32.533	34.075	2018	2	15	12	8	YES	1.25 in	HMA	1	NRPCCP	10	NA	Type 3	4	PCC	-
7E	7	9	EB	IS	44	Lawrence	UBOL	2005	J7I0721	040917-701	33.032	37.472	2018	2	15	12	8	YES	1.25 in	HMA	1	RPCCP	9	1964	Type B	4	PCC, Tied	-
7W	7	10	WB	IS	44	Lawrence	UBOL	2005	J7I0721	040917-701	255.665	260.119	2018	2	15	12	8	YES	1.25 in	HMA	1	RPCCP	9	1964	Type B	4	PCC, Tied	-
8E	7R	9	EB	IS	44	Lawrence	UBOL	2018	J7I3074	Replaced Drive Lanes of Previous Overlay	33.032	37.472	2018	1	15	12	9	NO	1.25 in	Geotextile	NA	RPCCP	9	1964	Type B Aggregate	4	PCC	Rehabilitation of DL from project 7E
8W	7R	10	WB	IS	44	Lawrence	UBOL	2018	J7I3074	Replaced Drive Lanes of Previous Overlay	255.665	260.119	2018	1	15	12	9	NO	1.25 in	Geotextile	NA	RPCCP	9	1964	Type B Aggregate	4	PCC	Rehabilitation of DL from project 7W
9E	8	9	EB	IS	44	Crawford	UBOL	2005	J9I0509	040917-901	204.608	213.799	2018	2	15	12	8	YES	1.25 in	HMA	1	NRPCCP	9	NA	NA	NA	PCC, Tied	-
10E	9	3560	EB	US	36	Macon	UBOL	2005	J2P0726	040618-201	109.058	120.110	2018	2	15	14	8	YES	1.25 in	HMA	1	HMA	NA	NA	NA	NA	PCC	-
11E	10	9	EB	IS	44	Laclede	UBOL	2006	J8I0747	051118-803	134.600	141.077	2018	2	15	14	8	NO	NONE	HMA	1	NRPCCP	7.75	1993	NA	NA	A2, A1	-
12E	10	9	EB	IS	44	Laclede	UBOL	2006	J8I0748	051118-803	141.077	145.120	2018	2	15	14	8	NO	1.25 in	HMA	4	NRPCCP	7.75	1993	NA	NA	A2, A1	-
13W	11	1101	WB	US	412	Dunklin	UBOL	2006	J0P0570	051118-X02	22.943	26.342	2018	2	15	13.8	8	NO	NONE	HMA	1	ACP	VAR	NA	NA	NA	PCC	-
14S	12	263	SB	IS	57	Mississippi	UBOL	2007	J0I0973	070330-X01	0.369	12.747	2018	2	15	14	8	NO	1.25 in	HMA	1	NRPCCP	NA	NA	NA	NA	A2 type	-
15E	13	6372	EB	IS	64	St. Louis/ St. Louis City	UBOL	2007	J6I0978	Design Build	27.450	36.580	2018	4	15	12	9	NO	1.25 in	Existing HMA	NA	ACP	NA	NA	Rock Base	NA	A2 type	Design-Build
15W	13	6373	WB	IS	64	St. Louis/ St. Louis City	UBOL	2007	J6I0978	Design Build	4.210	13.350	2018	4	15	12	9	NO	1.25 in	Existing HMA	NA	ACP	NA	NA	Rock Base	NA	A2 type	Design-Build
16N	14	264	NB	IS	57	Mississippi	UBOL	2009	J010983	090123-X01	13.032	21.925	2018	2	15	13	8	NO	1.25 in	HMA or Existing HMA	VAR	RPCCP	9	NA	Aggregate Base	4	A2 type	-
17W	15	10	WB	IS	44	Phelps	UBOL	2009	J9I2166	090424-901	107.539	116.599	2018	2	15	12	8	NO	1.25 in	Geotextile	NA	NRPCCP	8	NA	NA	NA	NA	-
18N	16	12	NB	IS	55	Cape/ Perry	UBOL	2010	J0I2200	091218-X01	105.966	107.966	2018	2	15	13	8	NO	1.25 in	Geotextile	NA	NA	NA	NA	NA	NA	A2 type	-
19N	17	12	NB	IS	55	Pemiscot	UBOL	2010	J0I2171	090424-X02	0.076	15.079	2018	2	15	13	8	NO	1.25 in	Geotextile	NA	RPCCP	8	NA	Aggregate Base	4	A2 Type	-
20N	18	4984	NB	IS	35	Clinton	UBOL	2010	J1I1040	090120-101	41.838	48.878	2018	2	15	12	8	NO	1.25 in	Existing HMA	VAR	НМА	NA	NA	NA	NA	A2 Type	-
208	18	4986	SB	IS	35	Clinton	UBOL	2010	J1I1040	090120-101	65.539	72.555	2018	2	15	12	8	NO	1.25 in	Existing HMA	VAR	НМА	NA	NA	NA	NA	A2 Type	-

B	_	vid	2	sg	ute	unty	erlay pe	nstruction te	b.No	ntract.ID	vised g.mi ırt	vised g.mi d	ar of g.mi	umber Lanes	int acing, ft	ıb İdth, ft	ıb ickness, in	aled ints	wels	terlayer pe	terlayer ickness, in	lder vement	ıder vement ickness, in	ider vement e	se	se ickness, in	oulder pe	mments
rn	No	Tw	Din	De	Ro	Co	0v Ty	C0 Da	lot	Co	Re Lo Sta	Re Lo En	Ye Lo	Nu of]	Joi Sp:	Sla Wi	Sla Th	Sea Joi	Do	Int Ty	Int Th	Un Pa	Un Pa Th	Un Pa Ag	Ba Ty	Ba Th	Sho Ty	Co
21N	19	4984	NB	IS	35	Clay	UBOL	2010	J4I1382	091218-408	24.843	33.017	2018	2	15	12	8	NO	1.25 in	Geotextile	NA	ACP	NA	NA	NA	NA	A2 Type	-
21S	19	4986	SB	IS	35	Clay	UBOL	2010	J4I1382	091218-408	81.393	89.600	2018	2	15	12	8	NO	1.25 in	Geotextile	NA	ACP	NA	NA	NA Aggragata	NA	A2 Type	-
22E	20	9	EB	IS	44	Franklin	UBOL	2010	J6I2011	090626-604	251.534	256.562	2018	2	15	12	8	NO	1.25 in	Geotextile	NA	ACP	VAR	NA	Base	4	A2 Type	-
22W	20	10	WB	IS	44	Franklin	UBOL	2010	J6I2011	090626-604	36.538	41.554	2018	2	15	12	8	NO	1.25 in	Geotextile	NA	ACP	VAR	NA	Base	4	A2 Type	-
23W	21	10	WB	IS	44	Pulaski	UBOL	2011	J9I2149	101022-805	130.375	139.258	2018	2	15	12	8	NO	1.25 in	Geotextile	NA	ACP	VAR	NA	NA Type 3	NA	PCC, tied	-
24N	22	12	NB	IS	55	Pemiscot	UBOL	2015	J9P2244B	150123-Н02	15.080	18.680	2018	2	15	12	9	NO	1.25 in	Geotextile	NA	ACP	VAR	NA	Aggregate	4	PCC	-
25N	23	6039	NB	IS	435	Jackson	UBOL	2019	J4I2337	171201-C01	0.045	3.330	2018	5	15	12	8.5 - 11	NO	1.25 in	Existing HMA	NA	ACP	VAR	NA	Aggregate Base	4	PCC	X-section shows different slab thicknesses
258	23	6042	SB	IS	435	Jackson	UBOL	2019	J4I2337	171201-C01	51.789	55.080	2018	5	15	12	8.5 - 11	NO	1.25 in	Existing HMA	NA	ACP	VAR	NA	Aggregate Base	4	PCC	X-section shows different slab thicknesses
26N	24	4984	NB	IS	I-35	Daviess	UBOL	2006	J1I0895	051118-104	69.020	78.440	2018	2	15	12	8	NO	NONE	HMA	1	RPCCP	9	1978	Type 1 or 2	4	A2 Type	Rehabilitated by
26S	24	4986	SB	IS	I-35	Daviess	UBOL	2006	J110895	051118-104	35.987	45.398	2018	2	15	12	8	NO	NONE	HMA	1	RPCCP	9	1978	Type 1 or 2	4	A2 Type	Rehabilitated by
27S	1	6102	SB	RT	D	Cass	BBOL	2008	J4S2246	080523-412	0.219	3.000	2017	1	6	6	5	NO	NONE	Geotextile	NA	NRPCCP	8	NA	Aggregate	4	A2 Type	-
27N	1	6103	NB	RT	D	Cass	BBOL	2008	J4S2246	080523-412	23.120	25.912	2017	1	6	6	5	NO	NONE	Geotextile	NA	NRPCCP	8	NA	Aggregate	4	A2 Type	-
285	2	11	SB	US	61	Jefferson/ Ste. Genevieve	BBOL	2009	J6S1961	081024-601	200.925	213.675	2018	1	6	6	5	NO	NONE	Existing HMA	NA	ACP	6 + 8	NA	NA	NA	Agg Shldr	-
28N	2	7773	NB	US	61	Jefferson/ Ste.	BBOL	2009	J6S1961	081024-601	180.376	193.124	2018	1	6	6	5	NO	NONE	Existing HMA	NA	ACP	6 + 8	NA	NA	NA	Agg Shldr	-
29E	3	3560	EB	US	36	Shelby/ Marion	BBOL	2010	J3P0792B	100514-302	162.199	169.418	2018	2	6	6	5	NO	NONE	Existing HMA	NA	НМА	NA	NA	NA	NA	АЗ Туре	-
30N	4	6365	NB	МО	79	Marion	BBOL	2013	J3P2193	130222-B01	78.520	86.141	2018	1	6	6	5	NO	NONE	Geotextile	NA	NA	NA	NA	NA	NA	A3 Type	
305	4	6366	SB	МО	79	/Ralls Marion/	BBOL	2013	J3P2193	130222-B01	1.811	9.432	2018	1	6	6	5	NO	NONE	Geotextile	NA	NA	NA	NA	NA	NA	A3 Type	
215	5	1075	SD	MO	5	Ralls	DDOL	2013	15022270	121122 D00	250 525	250 500	2010	2	6	6	6	NO	NONE	Existing	NA	IIMA	NA	NA	NA	NA	Curb &	
515	3	1975	30	MO	5	Laciede	BBUL	2014	J3P2237B	131122-D09	230.323	230.390	2018	2	0	0	0	NO	NONE	HMA	INA	пма	INA	INA	INA	INA	PCC	-
32W	6	6142	WB	МО	340	St. Louis	BBOL	2006	J6S1773	060428-605	9.960	10.030	2018	2	6	6	6	NO	NONE	Existing HMA	NA	НМА	NA	1991, 1978	Aggregate Base	4	PCC	-
33E	7	1100	EB	US	412	Dunklin	BBOL	2016	J9S3010	150515-H07	23.532	23.879	2017	2	6	6	6	NO	NONE	Geotextile	NA	ACP	NA	NA	NA	NA	Curb & Gutter, PCC	-
33W	7	1101	WB	US	412	Dunklin	BBOL	2016	J9S3010	150515-H07	26.912	27.270	2017	2	6	6	6	NO	NONE	Geotextile	NA	ACP	NA	NA	NA	NA	Curb & Gutter, PCC	-
338	8	11	SB	US	61	Scott	BBOL	2016	J9S3010	150515-H07	319.163	319.322	2018	1	6	6	6	NO	NONE	Existing HMA	NA	НМА	NA	NA	NA	NA	PCC	Location of the project is the intersection of US61 with route ZZ and HH
33N	8	7773	NB	US	61	Scott	BBOL	2016	J9S3010	150515-Н07	74.558	74.717	2018	1	6	6	6	NO	NONE	Existing HMA	NA	HMA	NA	NA	NA	NA	PCC	-
34E	9	3562	EB	US	24	Randolph	BBOL	2010	J2P0779C	100122-202	140.897	140.980	2018	2	6	6	5.5	NO	NONE	Geotextile	NA	HMA	NA	NA	NA	NA	Curb & Gutter	BBOL applied only on the intersection of US-24 and BUS-63

U.D	No	Twid	Dir	Desg	Route	County	Overlay Type	Construction Date	Job.No	Contract.ID	Revised Log.mi Start	Revised Log.mi End	Year of Log.mi	Number of Lanes	Joint Spacing, ft	Slab Width, ft	Slab Thickness, in	Sealed Joints	Dowels	Interlayer Type	Interlayer Thickness, in	Under Pavement	Under Pavement Thickness, in	Under Pavement Age	Base Type	Base Thickness, in	Shoulder Type	Comments
34W	9	3563	WB	US	24	Randolph	BBOL	2010	J2P0779C	100122-202	80.273	80.356	2018	2	6	6	5.5	NO	NONE	Geotextile	NA	НМА	NA	NA	NA	NA	Curb & Gutter	BBOL applied only on the intersection of US-24 and BUS-63
348	9	3534	SB	BUS	63	Randolph	BBOL	2010	J2P0779C	100122-202	1.030	1.110	2016	2	6	6	5.5	NO	NONE	Geotextile	NA	HMA	NA	NA	NA	NA	Curb & Gutter	BBOL applied only on the intersection of US-24 and BUS-63
34N	9	3533	NB	BUS	63	Randolph	BBOL	2010	J2P0779C	100122-202	8.470	8.550	2018	2	6	6	5.5	NO	NONE	Geotextile	NA	НМА	NA	NA	NA	NA	Curb & Gutter	BBOL applied only on the intersection of US-24 and BUS-63
35N	24R	4984	NB	IS	I-35	Daviess	BBOL	2013	J1I2221	130125-A01, Rehab of 051118-104	69.020	78.440	2018	2	7.5	6	8	NO	NONE	НМА	1	RPCCP	9	1978	Type 1 or 2 Agg	4	A2 Type	Rehab project for 24N (sawing of existing slabs into new pattern)
358	24R	4986	SB	IS	I-35	Daviess	BBOL	2013	J1I2221	130125-A01, Rehab of 051118-104	35.987	45.398	2018	2	7.5	6	8	NO	NONE	HMA	1	RPCCP	9	1978	Type 1 or 2 Agg	4	A2 Type	Rehab project for 24S (sawing of existing slabs into new pattern)
36S	1	1975	SB	МО	5	Laclede	BOL	2003	J8P0701	NA	250.520	250.590	2018	2	4	4	4	YES	NONE	NA	NA	HMA	NA	NA	NA	NA	Curb & Gutter	-
36N	1	1976	NB	МО	5	Laclede	BOL	2003	J8P0701	NA	102.146	102.220	2018	2	4	4	4	YES	NONE	NA	NA	HMA	NA	NA	NA	NA	Curb & Gutter	-
378	2	54	SB	МО	19	Ralls	BOL	2012	J3P2152	120120-B02	8.411	8.480	2018	1	4	4	4	NO	NONE	NA	NA	НМА	NA	NA	NA	NA	HMA	BOL only present at the intersection between MO-19 and roads P and H
37N	2	55	NB	МО	19	Ralls	BOL	2012	J3P2152	120120-B02	254.348	254.415	2017	1	4	4	4	NO	NONE	NA	NA	HMA	NA	NA	NA	NA	HMA	BOL only present at the intersection between MO-19 and roads P and H
38N	3	6040	NB	МО	291	Jackson	BOL	2003	J4P1513	030321-403	30.050	30.243	2018	2	4	4	4	YES	NONE	NA	NA	HMA	NA	NA	NA	NA	Curb & Gutter	-
38S	3	6041	SB	МО	291	Jackson	BOL	2003	J4P1513	030321-403	19.100	19.310	2018	2	4	4	4	YES	NONE	NA	NA	HMA	NA	NA	NA	NA	Curb & Gutter	-
39W	4	7783	WB	US	60	Newton	BOL	1999	J7P0683	NA	328.070	328.500	2018	1	4	4	4	YES	NONE	NA	NA	HMA	NA	NA	NA	NA	HMA	-
39E	4	7782	EB	US	60	Newton	BOL	1999	J7P0683	NA	12.280	12.700	2018	1	4	4	4	YES	NONE	NA	NA	HMA	NA	NA	NA	NA	HMA	-
40W	5	1029	WB	МО	34	Cape Girardeau	BOL	2009	J0U0598C	080229-X02	NA	NA	NA	2	4	4	4	NO	NONE	NA	NA	HMA	NA	NA	NA	NA	PCC	Project not available on ARAN viewer
41W	6	1978	WB	МО	14	Christian	BOL	2008	J8P0878C	080425-803	94.910	94.960	2017	1	4	4	4	NO	NONE	NA	NA	HMA	NA	NA	NA	NA	Gutter	-
41E	6	1977	EB	МО	14	Christian	BOL	2008	J8P0878C	080425-803	24.902	24.954	2017	1	4	4	4	NO	NONE	NA	NA	HMA	NA	NA	NA	NA	Curb & Gutter	-

Evaluating Performance of Concrete Overlays for Pavement Rehabilitation

APPENDIX C—CONSTRUCTION QUALITY ASSURANCE DATA

Table C-1. Summar	v of concrete overlay	v thickness from	SiteManager and PWL.

U.ID.	Overlay Type	Job.No.	Average, in	Standard Deviation, in	Count, No of Observations	Design Thickness, in	Delta Thickness, in	Q _U USL = None	QL LSL = (design thickness - 0.5)	PWLU	PWLL	Design Thickness-0.5 in PWL	Design Thickness PWL
01W	UBOL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
02S	UBOL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
03E	UBOL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
04E	UBOL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
05N	UBOL	J6I1486	9.51	1.23	396	8	1.51	100	1.63	100	95	95	89
05S	UBOL	J6I1486	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	89
06N	UBOL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
06S	UBOL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
07E	UBOL	J7I0721	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
07W	UBOL	J7I0721	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	100
08E	UBOL	J7I3074	9.93	0.72	65	9	0.93	100	1.99	100	98	98	90
08W	UBOL	J7I3074	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	90
09E	UBOL	J9I0509	8.92	0.38	14	8	0.92	100	2.41	100	99	100	99
10E	UBOL	J2P0726	8.13	0.07	7	8	0.13	100	8.91	100	100	100	96
11E	UBOL	J8I0747	7.79	0.46	10	8	-0.21	100	0.63	100	74	74	50
12E	UBOL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
13W	UBOL	J0P0570	10.72	0.41	3	8	2.72	100	7.91	100	100	100	100
14S	UBOL	J0I0973	7.96	0.61	270	8	-0.04	100	0.75	100	77	77	50
15E	UBOL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
15W	UBOL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
16N	UBOL	J0I0983	8.47	1.10	180	8	0.47	100	0.87	100	81	81	66
17W	UBOL	J9I2166	9.15	1.47	147	8	1.15	100	1.12	100	87	87	78
18N	UBOL	J0I2200	8.72	0.30	2	8	0.72	100	2.35	NA	NA	NA	NA
19N	UBOL	J0I2171	8.16	0.64	246	8	0.16	100	1.04	100	85	85	60
20N	UBOL	J1I1040	8.92	0.86	213	8	0.92	100	1.66	100	95	95	86
20S	UBOL	J1I1040	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	86
21N	UBOL	J4I1382	8.00	0.00	210	8	0.00	100	NA	100	NA	NA	NA
21S	UBOL	J4I1382	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
22E	UBOL	J6I2011	11.10	1.76	130	8	3.10	100	2.05	100	98	98	96
22W	UBOL	J6I2011	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	96
23W	UBOL	J9I2149	8.38	0.77	90	8	0.38	100	1.15	100	87	87	69
24N	UBOL	J9P2244B	9.49	0.68	37	9	0.49	100	1.45	100	93	93	76
25N	UBOL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
25S	UBOL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
26N	UBOL	J1I0895	8.82	0.78	83	8	0.82	100	1.69	100	96	96	85
26S	UBOL	J1I0895	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	85
27N	BBOL	J4S2246	5.99	0.58	56	5	0.99	100	2.57	100	99	99	96

U.ID.	Overlay Type	Job.No.	Average, in	Standard Deviation, in	Count, No of Observations	Design Thickness, in	Delta Thickness, in	Qu USL = None	QL LSL = (design thickness - 0.5)	PWLU	PWLL	Design Thickness-0.5 in PWL	Design Thickness PWL
27S	BBOL	J4S2246	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	96
28N	BBOL	J6S1961	5.62	0.93	175	5	0.62	100	1.20	100	89	89	75
28S	BBOL	J6S1961	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	75
29E	BBOL	J3P0792B	5.65	0.62	56	5	0.65	100	1.86	100	97	97	85
30N	BBOL	J3P2193	5.22	0.88	80	5	0.22	100	0.83	100	80	80	60
30S	BBOL	J3P2193	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	60
31S	BBOL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
32W	BBOL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
33E	BBOL	J9S3010	6.34	0.34	3	6	0.34	100	2.46	100	100	100	83
33N	BBOL	J9S3010	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	83
33S	BBOL	J9S3010	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	83
33W	BBOL	J9S3010	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	83
34E	BBOL	J2P0779C	5.60	0.44	30	5.5	0.10	100	1.37	100	92	92	59
34N	BBOL	J2P0779C	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	59
34S	BBOL	J2P0779C	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	59
34W	BBOL	J2P0779C	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	59
35N	BBOL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
35S	BBOL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
36N	BOL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
36S	BOL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
37N	BOL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
37S	BOL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
38N	BOL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
38S	BOL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
39E	BOL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
39W	BOL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
40W	BOL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
41E	BOL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
41W	BOL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

U.ID.	Overlay Type	Job.No.	Average, lbf/in ²	Standard Deviation, lbf/in ²	Count, No of Observations	Q _U USL = none	Q_L $LSL = 4,000$ lbf/in^2	PWL _U	PWLL	PWL	Average, lbf/in ²
01W	UBOL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
02S	UBOL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
03E	UBOL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
04E	UBOL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
05N	UBOL	J6I1486	5,358	1,117	395	100	1.22	100	89	89	5,358
05S	UBOL	J6I1486	NA	NA	NA	NA	NA	NA	NA	NA	NA
06N	UBOL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
06S	UBOL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
07E	UBOL	J7I0721	5,136	705	223	100	1.62	100	95	95	5,136
07W	UBOL	J7I0721	NA	NA	NA	NA	NA	NA	NA	NA	NA
08E	UBOL	J7I3074	6,712	1,033	65	100	2.63	100	99	99	6,712
08W	UBOL	J7I3074	NA	NA	NA	NA	NA	NA	NA	NA	NA
09E	UBOL	J9I0509	4,757	445	80	100	1.7	100	96	96	4,757
10E	UBOL	J2P0726	5,857	712	126	100	2.61	100	99	99	5,857
11E	UBOL	J8I0747	5,017	750	95	100	1.36	100	91	91	5,017
12E	UBOL	J8I0748	4,948	584	30	100	1.63	100	95	95	4,948
13W	UBOL	J0P0570	5,997	484	3	100	4.13	100	100	100	5,997
14S	UBOL	J0I0973	5,888	626	278	100	3.02	100	99	99	5,888
15E	UBOL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
15W	UBOL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
16N	UBOL	J0I0983	5,406	618	180	100	2.28	100	99	99	5,406
17W	UBOL	J9I2166	5,544	1,089	163	100	1.42	100	92	92	5,544
18N	UBOL	J0I2200	4,745	338	12	100	2.21	100	99	99	4,745
19N	UBOL	J0I2171	6,393	620	246	100	3.87	100	100	100	6,393
20N	UBOL	J1I1040	5,108	547	213	100	2.03	100	98	98	5,108
20S	UBOL	J1I1040	NA	NA	NA	NA	NA	NA	NA	NA	NA
21N	UBOL	J4I1382	7,153	753	210	100	4.19	100	100	100	7,153
21S	UBOL	J4I1382	NA	NA	NA	NA	NA	NA	NA	NA	NA
22E	UBOL	J6I2011	5,100	865	130	100	1.28	100	90	90	5,100
22W	UBOL	J6I2011	NA	NA	NA	NA	NA	NA	NA	NA	NA
23W	UBOL	J9I2149	6,094	850	90	100	2.47	100	99	99	6,094
24N	UBOL	J9P2244B	5,834	734	37	100	2.5	100	99	99	5,834
25N	UBOL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
25S	UBOL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
26N	UBOL	J1I0895	4,836	616	83	100	1.36	100	91	91	4,836
26S	UBOL	J1I0895	NA	NA	NA	NA	NA	NA	NA	NA	NA
27N	BBOL	J4S2246	5,604	259	36	100	6.2	100	100	100	5,604
27S	BBOL	J4S2246	NA	NA	NA	NA	NA	NA	NA	NA	NA
28N	BBOL	J6S1961	5,721	669	175	100	2.58	100	99	99	5,721
28S	BBOL	J6S1961	NA	NA	NA	NA	NA	NA	NA	NA	NA
29 E	BBOL	J3P0792B	4,786	409	56	100	1.93	100	98	98	4,786

Table C-2. Summary of PCC strength data from SiteManager and PWL.

U.ID.	Overlay Type	Job.No.	Average, lbf/in ²	Standard Deviation, lbf/in ²	Count, No of Observations	Q _U USL = none	Q_L $LSL = 4,000$ lbf/in^2	PWLU	PWLL	PWL	Average, lbf/in ²
30N	BBOL	J3P2193	5,371	504	80	100	2.72	100	99	99	5,371
30S	BBOL	J3P2193	NA	NA	NA	NA	NA	NA	NA	NA	NA
31S	BBOL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
32W	BBOL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
33E	BBOL	J9S3010	6,125	1,170	18	100	1.82	100	97	97	6,125
33N	BBOL	J9S3010	NA	NA	NA	NA	NA	NA	NA	NA	NA
33S	BBOL	J9S3010	NA	NA	NA	NA	NA	NA	NA	NA	NA
33W	BBOL	J9S3010	NA	NA	NA	NA	NA	NA	NA	NA	NA
34E	BBOL	J2P0779C	5,666	792	30	100	2.11	100	99	99	5,666
34N	BBOL	J2P0779C	NA	NA	NA	NA	NA	NA	NA	NA	NA
34S	BBOL	J2P0779C	NA	NA	NA	NA	NA	NA	NA	NA	NA
34W	BBOL	J2P0779C	NA	NA	NA	NA	NA	NA	NA	NA	NA
35N	BBOL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
35S	BBOL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
36N	BOL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
36S	BOL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
37N	BOL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
37S	BOL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
38N	BOL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
38S	BOL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
39E	BOL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
39W	BOL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
40W	BOL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
41E	BOL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
41W	BOL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

U.ID.	Overlay Type	Job.No.	Average, %	Standard Deviation, %	Count, No of Observations	Q_U USL = 7.5%	Q_{L} $LSL = 4.5\%$	PWL _U	PWLL	PWL	Average, %	Standard Deviation, %
01W	UBOL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
02S	UBOL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
03E	UBOL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
04E	UBOL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
05N	UBOL	J6I1486	6.03	1.24	278	1.18	1.23	88	89	77	6.03	1.24
05S	UBOL	J6I1486	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
06N	UBOL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
06S	UBOL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
07E	UBOL	J7I0721	5.84	0.89	146	1.86	1.50	97	93	90	5.84	0.89
07W	UBOL	J7I0721	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
08E	UBOL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
08W	UBOL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
09E	UBOL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
10E	UBOL	J2P0726	4.73	1.87	18	1.48	0.12	94	55	49	4.73	1.87
11E	UBOL	J8I0747	6.60	0.91	20	0.99	2.31	84	99	83	6.60	0.91
12E	UBOL	J8I0748	6.18	0.47	5	2.80	3.57	100	100	100	6.18	0.47
13W	UBOL	J0P0570	8.25	1.47	8	-0.51	2.56	31	100	31	8.25	1.47
14S	UBOL	J0I0973	5.54	0.28	29	6.96	3.68	100	100	100	5.54	0.28
15E	UBOL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
15W	UBOL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
16N	UBOL	J0I0983	5.60	0.89	72	2.12	1.23	98	89	87	5.60	0.89
17W	UBOL	J9I2166	6.38	0.70	17	1.60	2.68	95	99	94	6.38	0.70
18N	UBOL	J0I2200	6.59	0.14	8	6.73	15.39	100	100	100	6.59	0.14
19N	UBOL	J0I2171	5.41	0.66	152	3.19	1.38	100	92	92	5.41	0.66
20N	UBOL	J1I1040	6.24	1.54	173	0.82	1.13	79	87	66	6.24	1.54
20S	UBOL	J1I1040	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
21N	UBOL	J4I1382	5.00	0.57	41	4.38	0.88	100	81	81	5.00	0.57
21S	UBOL	J4I1382	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
22E	UBOL	J6I2011	7.37	0.82	26	0.16	3.49	56	100	56	7.37	0.82
22W	UBOL	J6I2011	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
23W	UBOL	J9I2149	5.42	0.38	14	5.49	2.43	100	99	99	5.42	0.38
24N	UBOL	J9P2244B	5.39	1.00	7	2.11	0.88	98	81	79	5.39	1.00
25N	UBOL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
25S	UBOL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
26N	UBOL	J1I0895	6.20	NA	1	NA	NA	NA	NA	NA	6.20	NA
26S	UBOL	J1I0895	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
27N	BBOL	J4S2246	6.15	1.31	32	1.03	1.26	85	90	75	6.15	1.31
27S	BBOL	J4S2246	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
28N	BBOL	J6S1961	6.91	1.19	75	0.50	2.02	69	98	67	6.91	1.19
28S	BBOL	J6S1961	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

Table C-3. Summary of PCC air data from SiteManager and PWL.

U.ID.	Overlay Type	Job.No.	Average, %	Standard Deviation, %	Count, No of Observations	Q_U USL = 7.5%	Q_L LSL = 4.5%	PWL _U	PWLL	PWL	Average, %	Standard Deviation, %
29E	BBOL	J3P0792B	6.40	0.52	4	2.13	3.68	98	100	98	6.40	0.52
30N	BBOL	J3P2193	6.93	0.55	19	1.04	4.41	85	100	85	6.93	0.55
30S	BBOL	J3P2193	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
31S	BBOL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
32W	BBOL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
33E	BBOL	J9S3010	5.40	NA	1	NA	NA	NA	NA	NA	5.40	NA
33N	BBOL	J9S3010	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
33S	BBOL	J9S3010	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
33W	BBOL	J9S3010	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
34E	BBOL	J2P0779C	5.80	0.83	6	2.06	1.57	98	94	92	5.80	0.83
34N	BBOL	J2P0779C	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
34S	BBOL	J2P0779C	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
34W	BBOL	J2P0779C	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
35N	BBOL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
35S	BBOL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
36N	BOL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
36S	BOL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
37N	BOL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
37S	BOL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
38N	BOL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
38S	BOL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
39E	BOL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
39W	BOL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
40W	BOL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
41E	BOL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
41W	BOL	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

APPENDIX D—TRANSPORTATION MANAGEMENT SYSTEM (TMS) PERFORMANCE HISTORY DATA

AUTO_COND_SURVEY

DATE CREATED: 04/08/2004 DATE MODIFIED: 09/19/2016 AUTO COND SURVEY 09/19/2016

Description

This table contains automated condition survey (ARAN) data. **NOTE:** *This table contains information that is protected from disclosure by federal law, 23 USC Section 409 and the Missouri Open Records Law (Sunshine Act), Section 610.021 RSMo. Please review MoDOT's policy and procedure manual on the Sunshine Act before releasing any of the information contained herein.*

NAME	DESCRIPTION
ARC_ID	This is the id of the arc where the beginning point of this data resides. When the beginning point of the data is exactly on a node, the correct arc is on the one it's going to, rather than coming from. This is necessary to maintain proper log miles during the travelway maintenance process.
ARC_REF	This represents whether the data is going in the same direction as the arc or in the opposite direction of the arc. The letter 'G' means it is going with the arc (with 0 being the beginning of the arc and 100 being the end) and the letter 'L' means it is going the opposite direction of the arc. This is necessary to maintain proper log miles during the travelway maintenance process.
AUTO_COND_SURV_ID	Unique identifier for an Automated Condition Survey record.
AVERAGE_RUT	The average of the driver and passenger rut depth.
AVERAGE_RUT_SI	The metric equivalent of the average of the driver and passenger rut depth.
C_CRACKING_RATING	The rating of cracks for concrete pavement. Ratings are derived from a visual analysis of severity and extent and range from 0.0 (worst) to 5.0 (best).
C_PATCHING_RATING	The rating of patching for concrete pavement. Ratings are derived from a visual analysis of severity and extent and range from 0.0 (worst) to 5.0 (best).
CONDITION_INDEX	The sum of distresses that apply to a pavement. For asphalt, it is the sum of F Cracking, F Patching, Raveling, and Rut Index. For concrete, it is the sum of Joint Condition, C Cracking, C Patching, D Cracking and Spalling.

CROSSFALL	Slope of the road.
CURR_SURVEY_FLAG	Identifies a record as the most current. $Y = current$; $N = Not current$.
D_CRACKING_RATING	The rating of D Cracking for a pavement. Ratings are derived from a visual analysis of severity and extent and range from -5.0 (worst) to 0.0 (no D-Cracking). Note: that the value is negative.
DATA_ID	This is a unique identifier that relates the location back to the detail record in the business table. Having the DATA_ID on the location table allows there to be multiple locations for one detail record. (For example, a construction project can impact several routes).
DATE0	Date the automated condition (ARAN) survey was conducted.
DRIVER_IRI	International Roughness Index Number indicating roughness statistics in the left wheel path.
DRIVER_RUT_DEPTH	Maximum rut depth measured in the left wheel path of a particular lane of flexible pavement. (Measured to a tenth of an inch).
DRIVER_RUT_DPTH_SI	The metric value of the Driver Rut Depth.
ELEVATION	The height of a given level.
EVENT_NUMBER	Number of events within an interval for the Automated Condition Survey.
F_CRACKING_RATING	The rating of cracks for flexible pavement. Ratings are derived from a visual analysis of severity and extent and range from 0.0 (worst) to 5.0 (best).
F_PATCHING_RATING	The rating of patching for flexible pavement. Ratings are derived from a visual analysis of severity and extent and range from 0.0 (worst) to 5.0 (best).
GRADE	The incline or decline of a roadway.
IMAGE_NUMBER	Original image file from ARAN computer.
JOINT_COND_RTNG	The condition rating of joints. Ratings are derived from a visual analysis of severity and extent and range from 0.0 (worst) to 5.0 (best).

LAST_CHANGE_DATE	(DD-MON-YYYY HH:mi:ss) this is the date of the last time the auto condition survey record was changed in any way.
LAST_CHANGE_USER	This is the user ID of the last person to change the auto condition survey record in any way.
LATITUDE	This represents the latitude of the location in decimal degrees.
LONGITUDE	This represents the longitude of the location in decimal degrees.
PASS_RUT_DEPTH_SI	The metric value for Passenger Rut Depth.
PASS_RUT_DPTH	Maximum rut depth measured in the right wheel path of a particular lane of flexible pavement. (Measured to nearest tenth of an inch).
PASSENGER_IRI	International Roughness Index Number indicating roughness statistics in the right wheel path.
PAVEMENT_ID	Identifies the type of pavement. Values are AC = Asphaltic Concrete; PCC = Portland Cement Concrete.
PAVEMENT_ROUGH	The rating of pavement smoothness derived from the Automated Condition Survey axel acceleration (ride). Ratings range from 0.0 (worst) to 5.0 (best).
POS	This is a number that represents the location of the beginning point along the arc. It is determined as a percentage with 0 being the beginning of the arc and 100 being the end of the arc. This is necessary to maintain proper log miles during the travelway maintenance process.
PRES_SVC_RATING	A 40-point scale representing relative pavement condition. PSR id developed from ratings of individual distresses and roughness weight and combined to form a single value.
RAVELING_RATING	The rating of raveling of a pavement. Raveling is the progressive loss of pavement material from the surface. Ratings are derived from a visual analysis of severity and extent and range from 0.0 (worst) to 5.0 (best).
RUNFILE	Unique ARAN file number.
RUT_DEPTH_SI_UOM	The metric unit of measure for driver and passenger rut depth.
RUT_DEPTH_UOM	Unit of measure for driver and passenger rut depth.

RUT_RATING	The rating of measured rut depth ranging from 0.0 (worst) to 5.0 (best).
SEALING_INDICATOR	Indicates whether or not the cracks are sealed.
SHAPE	This column allows the data to be drawn in ArcGIS without having to create a route event.
SPALLING_RATING	A rating of spalling at joint and cracks. Spalling is the loss of piece(s) of concrete pavement from the surface or along the edges of cracks and joints. Ratings are derived from a visual analysis of severity and extent and range from 0.0 (worst) to 5.0 (best).
TW_LANE_ID	Unique identifier for a Travelway Lane record. <i>Joins with</i> TRAVELWAY_LANE
VISUAL_LANE_NO	Number assigned to the lane (visibly how the lanes "stack up" horizontally). This number begins with one from the leftmost side to the right of the travelway (following the direction of travel.
YEAR	The year the data was collected.

SS_PAVEMENT_CURRENT

DATE CREATED: 09/16/2011

DATE MODIFIED: 06/22/2018

SS_PAVEMENT_CURRENT

Description

Each SS_PAVEMENT record represents pavement breaks on a Traffic Information Segment. A pavement break may be caused by a change in surface type, surface width, city limits, etc. This is one of the tables used to generate our yearly State of the System report.

NAME	DESCRIPTION
AADT	This is the Annual Average Daily Traffic which is the estimate of typical daily traffic on a road segment for all days of the week, Sunday through Saturday, over a period of one year.
AADT_YEAR	This is the calendar year that the data was collected of the AADT.
ACCESS_CAT_NAME	Describes the accessibility of a pavement record on a particular route.
ARAN_YEAR	Year the ARAN data was collected.
ARC_ID_BEGIN	This is the ID of the arc where the beginning point of this data resides. When the beginning point of the data is exactly on a node, the correct arc is the one it's going to, rather than coming from. This is necessary to maintain proper log miles during the travelway maintenance process.
ARC_ID_END	This is the ID of the arc where the ending point of this data resides. When the ending point of the data is exactly on a node, the correct arc is the one it's coming from, rather than going to. This is necessary to maintain proper log miles during the travelway maintenance.
ARC_REF_BEGIN	This represents whether the data is going in the same direction as the arc or in the opposite direction of the arc. The letter 'G' means it is going with the arc (with 0 being the beginning of the arc and 100 being the end) and the letter 'L' means it is going the opposite direction of the arc. This is necessary to maintain proper log miles during the travelway maintenance process.
ARC_REF_END	This represents whether the data is going in the same direction as the arc or in the opposite direction of the arc. The letter 'G' means it is going with the arc and the letter 'L' means it is going the opposite direction of the arc. This is necessary to maintain proper log miles during the travelway maintenance process.

AREA_DESG_NAME	This field is used to describe an area based on population for the pavement record.
AREA_ENGINEER	Name of the area engineer where the pavement record resides.
AVERAGE_IRI	Average of driver and passenger wheel path (International Roughness Index).
BEG_CONTINUOUS_LOG	This is the continuous log mile the represents the beginning location of a piece of range data. All routes start with a beginning log of 0 and accumulate without gaps to the end of the route.
CENTERLINE	Centerline mileage for each pavement record. Centerline mileage is calculated for travelways with directions of south and east.
CITY_ID	-
CITY_NAME	The city in the City's official mailing address where the pavement record resides.
CNTL_BEG_CONT_LOG	This is the continuous log mile that represents the controlling beginning location of a piece of range data. All routes start with a beginning log of 0 and accumulate without gaps to the end of the route.
CNTL_END_CONT_LOG	This is the continuous log mile that represents the controlling ending location of a piece of range data. All routes start with a beginning log of 0 and accumulate without gaps to the end of the route.
CNTL_TW_DESG	This is the designation of the controlling route. The designation helps identify the route and determine its hierarchy.
CNTL_TW_DIRECTION	This field indicates the direction for the controlling route from the nearest intersecting street, roadway or landmark.
CNTL_TW_ID	Unique route identifier for the controlling route.
CNTL_TW_NAME	Name of the controlling route.
CNTL_TW_OFFSET	The offset direction for the controlling route indicates which direction the outer road resides from the main route it is associated with. For example, the outer roads for IS 70 are either north or south of IS 70.
COM_VOL_BY_DIR	The total commercial volume for a specific travelway segment by direction.
CONDITION_INDEX	The sum of distresses that apply to a pavement. For Asphalt it is the sum of 'F Cracking', 'F Patching', 'Raveling', and 'Rut Index'. For Concrete, it is the sum of 'Joint Condition', 'C Cracking', 'C Patching', 'D Cracking' and 'Spalling'.

COUNTY_NAME	This is the official name of the county that the pavement record resides. <i>Joins in</i> COUNTY
COUNTY_NUMBER	Unique identifier assigned to the county within the state where the pavement record resides.
CRACK_INDEX_FLEX	Rating assigned to the amount of cracking on asphaltic concrete.
CRACK_INDEX_RIGID	Rating assigned to amount of cracking on PCC (Portland Cement Concrete). Ratings are derived from a visual analysis of severity and extent with 0.0 (worst) to 5.0 (best).
CRACKING_PERCENT	The square feet of distress cracking in the wheel paths as a percentage of the total square feet of the lane.
DESG_BYWAY_CLS_NM	Names and identifies a designated scenic byway classification. Valid values are as follows: 'Federal Designated Scenic Byway' and 'State Designated Scenic Byway'.
DESG_TRUCK_RTE_NM	Classification for the travelways for federal or state designated truck routes. Valid values are as follows: 'Federal Designated Truck Route' and 'State Designated Truck Route'.
DIRECTIONAL	Indicates the direction of the inventory route.
DISTRICT	The MoDOT District number (1-7) that the pavement record falls in.
DISTRICT_ABBR	This is the two-letter abbreviation for the seven districts. Valid values are as follows: 'NW', 'NE', 'KC', 'CD', 'SL', 'SW', and 'SE'.
DIVIDED_UNDIVIDED	Indicates if the travelway is divided or undivided. A divided travelway is a travelway with any type of barrier or four-foot or greater flush median.
END_CONTINUOUS_LOG	This is the continuous log mile that represents the ending location of a piece of range data. All routes start with a beginning log of 0 and accumulate without gaps to the end of the route.
FAP_SYS_CLASS_NAME	This represents what the Federal Aid Primary System looked like in 1991. After that time, the definition changed to be based on functional class.
FAULTING	The average faulting measured in the section of pavement.
FED_AID_ELIGIBLE	This identifies what roads are eligible for federal aid based on functional class.
FED_CLS_NFS	Federal System Classification name – 'National Forest System'.
FED_CLS_NHS	Federal System Classification name – 'National Highway System'.

FED_CLS_PRIORITY	Federal System Classification name – 'Congressional Priority'.
FED_CLS_STRAHCON	Federal System Classification name – 'Strategic Highway Network Connector'.
FED_CLS_STRAHNET	Federal System Classification name – 'Strategic Highway Network' that is assigned to truck routes.
FED_CLS_UNCLASS	Federal System Classification name - 'Intermodal Connector'.
FED_SYS_CLS_NAME	A unique identifier assigned to the federal system classification.
FHWA_CONDITION	The 'Good', 'Fair', or 'Poor' rating as defined by the new PM2 Federal Highway definitions.
FUNC_CLASS_NAME	This table names and describes the type of functional classification used to categorize a travelway.
INTERCHANGE_ID	Unique identifier assigned to the interchange if the pavement record falls within an interchange.
INTERSECTION_NO	Unique identifier assigned to the travelway intersection pavement record.
JOINT_INDEX_RIGID	Rating assigned to amount of joints on PCC (Portland Cement Concrete). Ratings are derived from a visual analysis of severity and extent, and a range from 0.0 (worst) to 5.0 (best).
LANE_COLLECTED	Visual lane number that the ARAN data was collected.
LANE_MILES	The number of lane miles the project will cover.
LANE_WIDTH	The length of the lane measured in width.
LAST_CHANGED_DATE	(DD-MON-YYYY HH:mi:ss) this is the date of the last time the pavement record was changed in any way.
LAST_CHANGED_USER	The user ID of the individual who made the change to the pavement data.
LEFT_SHOULDER_TYPE	The type of shoulder on the left side of the travelway where the pavement record resides.
LEFT_SHOULDER_WIDTH	The width of the shoulder on the left side of the travelway where the pavement record resides.
LENGTH	Length of the pavement segment.
LRPT	Long Range Planning Transportation. Valid values are as follows: 'NHS', 'OTHER Arterial', 'COLLECTOR' or 'NOS'.
MAINT_DATE	The date of a maintenance treatment for the pavement record.

MAINT_LOCATION	The maintenance building responsible for the travelway where the pavement record is located.
MAINT_JOB_NUMBER	This is the job number of the maintenance completed on the pavement.
MAINT_OWNER_NAME	This is the owner of the pavement record was having maintenance on.
MAINT_OWNER_TYPE	This is the owner of the pavement record. Valid values are: 'CITY', 'COUNTY' and 'STATE'.
MAINT_TYPE	The type of maintenance treatment performed on the pavement.
MAJOR_MINOR	Major is established by functional class of Principal Arterial and above. The lower classes are considered 'Minor'.
MSHP_TROOP	Unique identifier assigned to the Highway Patrol Troop (A-I).
NUMBER_OF_LANES	Number of lanes per pavement record.
OVERLAPPING_IND	Used to indicate if a route is controlling or on an overlapping situation. 'Primary (P)', 'Secondary (S)' or 'Null'.
PATCH_INDEX_FLEX	Rating assigned to the amount of patching on asphaltic concrete.
PATCH_INDEX_RIGID	Rating assigned to the amount of patching on PCC (Portland Cement Concrete). Ratings are derived from a visual analysis of severity and extent, and a range from 0.0 (worst) to 5.0 (best).
PLANNING_ORG	Name of the planning organization that the pavement record resides.
PLANNING_ORG_NO	Unique identifier assigned to the planning organization.
PLANNING_ORG_TYPE	Type of planning organization such as 'MPO' (Metropolitan Planning Organization) or 'RPC' (Regional Planning Commission).
POS_BEGIN	This is a number that represents the location of the beginning point along the arc. It is determined as a percentage with 0 being the beginning of the arc and 100 being the end of the arc. This is necessary to maintain proper log miles during the travelway maintenance.
POS_END	This is a number that represents the location of the ending point along the arc. It is determined as a percentage with 0 being the beginning of the arc and 100 being the end of the arc. This is necessary to maintain proper log miles during the travelway maintenance process.
PRIOR_COUNTY	Previous county name where the pavement record was located.
PSR	A 40-point scale representing overall pavement condition. PSR is developed from ratings of individual distresses and roughness, weighted and combined to form a single value.

RAVEL_INDEX_FLEX	Rating assigned to the amount of raveling on asphaltic concrete.
ROADWAY_TYPE_NAME	Name of the roadway type for the pavement record. <i>Joins with</i> ROADWAY_TYPE
RUT_DEPTH	Displacement of material in a wheel path measured as the difference in elevation of both sides less the elevation of the displaced area with 0.0 (worst) to 5.0 (best).
RUT_INDEX	Number assigned to average rutting based on average rut depth.
SHAPE	This column allows the data to be drawn in ArcGIS without having to create a route event.
SHOULDER_TYPE	Name of the type of material from which the shoulder is constructed.
SHOULDER_WIDTH	The width of the shoulder surface measured in feet.
SPALL_INDEX_RIGID	Rating assigned to amount of spalling on PCC (Portland Cement Concrete). Ratings are derived from a visual analysis of severity and extent and range from 0.0 (worst) to 5.0 (best). Spalling is the loss of pieces of concrete pavement from the surface of along the edges of cracks and joints.
SS_PAVEMENT_ID	Unique identifier assigned to the pavement record.
STATE_BRIDGE_ID	Unique identifier assigned to a state bridges.
STATE_SYSTEM_CLASS	Describes how a travelway is classified by the Missouri Dept. of Transportation. Valid values are as follows: 'INTERSTATE', 'PRIMARY', 'SUPPLEMENTARY', or 'NOT ON SYSTEM'.
SUBAREA_LOCATION	The maintenance subarea where the pavement record is located.
SURFACE_DATE	Date that the pavement surface was laid.
SURFACE_TYPE	The name of the type of material from which the pavement surface is constructed.
THROUGH_LANES	A lane that continues to the next segment without any right or left handed turns.
TMA_NON_TMA	This is the Transportation Management Area with populations over 250,000 (for example, Kansas City or St. Louis).
TOTAL_AADT	The volume for both sides of a travelway added together (divided and undivided).
TRACKER_CONDITION	The three tracker measures are 'GOOD', 'NOT GOOD', and 'NA'. This represents whether the segment of road is considered good for the tracker.

TRAVELWAY_DESG	This is the designation of the route. The designation helps identify the route and determine its hierarchy.
TRAVELWAY_DIR	This field indicates the direction from the nearest intersecting street, roadway or landmark.
TRAVELWAY_ID	This is a unique ID that represents a route (for example, IS 70 East has a TRAVELWAY_ID = 19).
TRAVELWAY_NAME	The name of the route the pavement record resides on (for example, 'Main St.', '54', or 'AA').
TRAVELWAY_OFST_DIR	The offset direction indicates which direction the outer road resides from the main route it is associated with (for example, IS 70 the outer roads are either north or south of IS 70).
TRF_INFO_SEG_DESC	Describes the intersecting street of each traffic segment.
TRF_INFO_SEG_ID	Unique sequence number for the traffic segment that each SS_PAVEMENT resides on.
TRF_INFO_SEG_SEQ	Unique system generated identifier behind TRF_INFO_SEG_ID.
TW_ALIAS_NAME	A name given to a particular part of a travelway granted by the commission or legislature.
TW_CNTL_STAT_NAME	Describes the status of a route.
TW_DSGN_PVMT_NAME	Indicates the pavement design based on the number of trucks on the roadway.
TW_LANE_JOB_NUMBER	Unique identifier assigned to the lane job.
TW_OWNER_ID	Describes who owns the travelway.
TW_SPEED_LIMIT_CD	The speed limit where the pavement record resides.
URBAN_AREA_NAME	Rural (area with population less than 5,000), Urban (area with population $5,000 - 50,000$).
YEAR	Calendar year the data represents.

U.ID.	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018
1W	71	42	41	38	36	38	37	38	NA	134	118	112	126	114	107	119	48	47
2S	NA	87	56	54	60	54	62	58	NA	58	58	57	70	64	72	70	77	67
3E	NA	NA	63	NA	63	58	64	60	60	61	61	62	62	63	63	64	62	63
4E	NA	NA	147	97	62	53	46	44	42	41	41	40	39	37	39	40	36	36
5N	NA	NA	162	60	56	52	52	54	NA	53	62	60	NA	50	63	57	63	55
5S	NA	NA	128	60	57	52	52	53	NA	51	57	60	53	52	59	55	61	55
6N	NA	NA	NA	119	117	142	118	157	NA	116	132	117	119	120	118	120	117	114
6S	NA	NA	NA	110	143	107	146	105	106	107	110	108	105	106	109	107	104	107
7E	NA	NA	NA	NA	78	74	70	67	NA	72	66	68	74	71	71	74	69	NA
7W	NA	NA	NA	NA	46	38	34	34	NA	39	36	35	37	39	46	51	54	NA
8E	NA	37																
8W	NA	81																
9E	NA	NA	NA	NA	57	46	42	40	NA	45	45	44	46	53	53	57	67	50
10E	NA	NA	NA	NA	86	58	52	48	NA	49	50	48	53	51	49	51	NA	45
11E	NA	NA	NA	NA	NA	81	77	75	NA	78	80	76	78	79	83	86	79	61
12E	NA	NA	NA	NA	NA	74	69	68	NA	77	80	76	79	83	86	89	90	51
13W	NA	NA	NA	NA	NA	136	NA	65	65	63	68	63	65	71	72	77	75	94
14S	NA	NA	NA	NA	NA	NA	89	58	NA	61	60	58	66	70	65	67	59	61
15E	NA	NA	NA	NA	NA	NA	116	116	NA	69	68	68	69	71	72	73	77	79
15W	NA	NA	NA	NA	NA	NA	115	114	NA	68	69	72	79	75	78	79	NA	87
16N	NA	64	68	67	70	71	66	66	63	68								
17W	NA	69	73	77	NA	83	77	79	75	82								
18N	NA	61	49	43	44	46	45	40	35	37								
19N	NA	62	50	45	42	39	46	47	54	38								
20N	NA	72	71	69	72	71	71	73	89	91								
20S	NA	52	51	50	49	48	54	53	53	59								
21N	NA	60	44	48	45	38	43	40	42	43								
21S	NA	59	52	52	52	50	50	50	42	46								
22E	NA	76	84	84	89	83	86	83	80	81								
22W	NA	82	82	86	89	83	87	83	82	84								
23W	NA	61	59	58	59	58	59	47	50									
24N	NA	42	40	39														
25N	NA																	
25S	NA																	
26N	NA	NA	NA	NA	NA	77	72	74	NA	97	100	109	NA	NA	NA	NA	NA	NA
26S	NA	NA	NA	NA	NA	74	77	73	NA	95	110	111	NA	NA	NA	NA	NA	NA
27S	NA	196	90	96	119	95	98	NA	103	100	87	NA						

Table D-1. Mean IRI (in/mi) by year.

U.ID.	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018
27N	NA	204	81	NA	NA	NA	NA	98	NA	NA	NA	90						
28S	NA	85	87	92	95	NA	96	109	105	105								
28N	NA	128	NA	NA	NA	NA												
29E	NA	73	75	82	93	94	88	75	NA									
30N	NA	145	52	54	50	47	43											
30S	NA																	
31S	NA	225	NA	230	349	284												
32W	NA	NA	NA	NA	NA	NA	194	191	NA	183	NA	185	225	191	197	265	NA	199
33E	NA	134	59	NA														
33W	NA	160	95															
33S	NA	150	56	60														
33N	NA																	
34E	NA	213	NA	NA	NA	220	224											
34W	NA	182	232	NA	NA	185	196	206	NA	NA								
34S	NA	206	NA	NA	NA	NA	NA	145	NA	NA								
34N	NA	249	NA	135	247	167	NA	NA	194									
35N	NA	107	71	71	71	67	72											
358	NA	117	67	70	68	65	72											
36S	NA	NA	93	200	NA	268	NA	NA	NA	123	252	NA	NA	225	NA	236	349	284
36N	NA	NA	71	296	NA	NA	272	NA	NA	NA	NA	259	259	NA	NA	NA	NA	445
37S	NA	304																
37N	NA	220	NA															
38N	NA	NA	251	140	105	272	148	137	156	166	164	181	199	192	205	251	212	237
38S	NA	NA	179	240	208	223	213	226	234	229	209	250	296	256	317	254	295	286
39W	NA	NA	NA	77	142	NA	137	132	NA	NA	142	161	172	NA	204	190	158	168
39E	139	95	137	NA	NA	146	NA	NA	129	137	NA	NA	NA	148	NA	NA	NA	NA
40W	NA	95	86	92	104	114	86	91	118									
41W	NA	342	NA	NA	NA	NA	NA	NA	320	NA								
41E	NA	317	NA	NA	NA	346	NA	NA										

U.ID.	Twid	Direction	Designation	Route	County	Lanes	Construction Year-0	Year-n	AADTT at Year 0	AADTT at Year n	Annual Growth Rate	Growth Factor Year 0-2018	TF	DL	ESAL
1W	10	WB	IS	44	Webster/ Greene	2	2000	2018	4535	7,156	2.43%	23.79	0.75	0.90	26,576,229
2S	13	SB	IS	55	Pemiscot	2	2002	2018	3067	3,753	1.19%	18.73	0.75	0.90	14,148,383
3E	1100	EB	US	412	Pemiscot	2	2003	2018	683	847	1.36%	17.74	0.60	0.90	2,386,571
4E	1100	EB	US	412	Pemiscot	2	2003	2018	683	953	2.11%	18.79	0.60	0.90	2,528,867
5N	6512	NB	IS	255	St. Louis	3	2003	2018	5222	7,764	2.51%	19.40	0.75	0.70	19,408,184
5S	6513	SB	IS	255	St. Louis	3	2003	2018	5221	7,626	2.40%	19.22	0.75	0.70	19,233,026
6N	6040	NB	MO	291	Jackson	2	2004	2018	1420	1,048	-2.00%	13.07	0.50	0.90	3,047,273
6S	6041	SB	MO	291	Jackson	2	2004	2018	1353	1,185	-0.88%	14.11	0.50	0.90	3,134,842
7E	9	EB	IS	44	Lawrence	2	2005	2018	4434	3,575	-1.53%	12.69	0.75	0.90	13,865,483
7W	10	WB	IS	44	Lawrence	2	2005	2018	4283	5,630	1.97%	15.94	0.75	0.90	16,825,070
8E	9	EB	IS	44	Lawrence	2	2018	2018	3575	3,575	0.00%	1.00	0.75	0.90	880,791
8W	10	WB	IS	44	Lawrence	2	2018	2018	5630	5,630	0.00%	1.00	0.75	0.90	1,387,091
9E	9	EB	IS	44	Crawford	2	2005	2018	5325	4,938	-0.54%	13.52	0.75	0.90	17,738,333
10E	3560	EB	US	36	Macon	2	2005	2018	544	1,799	8.92%	25.88	0.60	0.90	2,773,336
11E	9	EB	IS	44	Laclede	2	2006	2018	4026	3,445	-1.19%	12.11	0.75	0.90	12,012,366
12E	9	EB	IS	44	Laclede	2	2006	2018	3972	3,709	-0.53%	12.60	0.75	0.90	12,328,260
13W	1101	WB	US	412	Dunklin	2	2006	2018	719	1,175	3.85%	16.47	0.60	0.90	2,334,411
14S	263	SB	IS	57	Mississippi	2	2007	2018	3391	3,902	1.18%	12.81	0.75	0.90	10,701,049
15E	6372	EB	IS	64	St. Louis/ St. Louis City	4	2007	2018	8939	9,977	0.92%	12.63	0.75	0.60	18,537,898
15W	6373	WB	IS	64	St. Louis/ St. Louis City	4	2007	2018	8939	12,126	2.57%	13.85	0.75	0.60	20,339,221
16N	264	NB	IS	57	Mississippi	2	2009	2018	2941	2,617	-1.16%	9.49	0.75	0.90	6,878,989
17W	10	WB	IS	44	Phelps	2	2009	2018	3636	6,014	5.16%	12.67	0.75	0.90	11,351,269
18N	12	NB	IS	55	Cape/Perry	2	2010	2018	1753	1,815	0.39%	9.14	0.75	0.90	3,947,766
19N	12	NB	IS	55	Pemiscot	2	2010	2018	4871	4,067	-1.98%	8.32	0.75	0.90	9,981,999
20N	4984	NB	IS	35	Clinton	2	2010	2018	2861	3,333	1.71%	9.64	0.75	0.90	6,795,634
20S	4986	SB	IS	35	Clinton	2	2010	2018	3578	4,686	3.04%	10.18	0.75	0.90	8,971,126
21N	4984	NB	IS	35	Clay	2	2010	2018	3897	4,091	0.54%	9.20	0.75	0.90	8,830,726
21S	4986	SB	IS	35	Clay	2	2010	2018	4335	6,479	4.57%	10.83	0.75	0.90	11,568,619
22E	9	EB	IS	44	Franklin	2	2010	2018	5390	5,561	0.35%	9.13	0.75	0.90	12,118,466
22W	10	WB	IS	44	Franklin	2	2010	2018	4698	7,470	5.29%	11.16	0.75	0.90	12,915,563
23W	10	WB	IS	44	Pulaski	2	2011	2018	5824	4,783	-2.43%	7.35	0.75	0.90	10,548,205
24N	12	NB	IS	55	Pemiscot	2	2015	2018	5158	4,865	-1.45%	3.91	0.75	0.90	4,973,554
26N	4984	NB	IS	I-35	Daviess	2	2006	2018	2515	1,735	-2.81%	11.02	0.75	0.90	6,824,510
26S	4986	SB	IS	I-35	Daviess	2	2006	2018	2607	1,852	-2.60%	11.16	0.75	0.90	7,165,333
27N	6103	NB	RT	D	Cass	1	2008	2018	203	317	4.12%	13.57	0.50	1.00	502,792
27S	6102	SB	RT	D	Cass	1	2008	2017	203	336	5.17%	14.33	0.50	1.00	530,974

U.ID.	Twid	Direction	Designation	Route	County	Lanes	Construction Year-0	Year-n	AADTT at Year 0	AADTT at Year n	Annual Growth Rate	Growth Factor Year 0-2018	TF	DL	ESAL
28N	7773	NB	US	61	Jefferson/ Ste. Genevieve	1	2012	2014	144	198	11.20%	9.84	0.60	1.00	310,420
28S	11	SB	US	61	Jefferson/ Ste. Genevieve	1	2012	2018	108	187	8.16%	8.97	0.60	1.00	212,077
29E	3560	EB	US	36	Shelby/Marion	2	2010	2017	1248	1,343	0.93%	9.34	0.60	0.90	2,296,733
30N	6365	NB	MO	79	Marion/Ralls	1	2013	2018	166	133	-3.57%	5.49	0.50	1.00	166,290
31S	1975	SB	MO	5	Laclede	2	2012	2018	1525	1,523	-0.02%	7.00	0.50	0.90	1,752,383
32W	6142	WB	MO	340	St. Louis	2	2006	2018	909	906	-0.03%	12.98	0.50	0.90	1,937,984
33E	1100	EB	US	412	Dunklin	2	2012	2017	1131	1,275	2.02%	7.44	0.60	0.90	1,658,126
33S	11	SB	US	61	Scott	1	2012	2018	187	178	-0.74%	6.85	0.60	1.00	280,415
33W	1101	WB	US	412	Dunklin	2	2012	2018	1694	1,447	-2.23%	6.55	0.60	0.90	2,186,778
34E	3562	EB	US	24	Randolph	2	2010	2018	288	466	5.49%	11.25	0.60	0.90	638,761
34N	3533	NB	BUS	63	Randolph	2	2010	2018	209	114	-6.49%	6.99	0.50	0.90	239,229
34S	3534	SB	BUS	63	Randolph	2	2010	2016	209	205	-0.24%	8.91	0.50	0.90	305,254
34W	3563	WB	US	24	Randolph	2	2010	2016	910	329	-13.53%	5.39	0.60	0.90	967,470
35N	4984	NB	IS	I-35	Daviess	2	2013	2018	1945	1,735	-1.89%	5.72	0.75	0.90	2,742,880
35S	4986	SB	IS	I-35	Daviess	2	2013	2018	2008	1,852	-1.34%	5.80	0.75	0.90	2,870,262
36N	1976	NB	MO	5	Laclede	2	2003	2018	1667	321	-9.78%	8.25	0.50	0.90	2,259,710
36S	1975	SB	MO	5	Laclede	2	2003	2018	1002	1,523	2.65%	19.61	0.50	0.90	3,227,617
37N	55	NB	MO	19	Ralls	1	2012	2017	509	525	0.52%	7.11	0.50	1.00	660,424
37S	54	SB	MO	19	Ralls	1	2012	2018	575	598	0.56%	7.12	0.50	1.00	747,061
38N	6040	NB	MO	291	Jackson	2	2002	2018	1344	1,988	2.33%	20.57	0.50	0.90	4,540,689
38S	6041	SB	MO	291	Jackson	2	2002	2018	1385	3,073	4.80%	25.39	0.50	0.90	5,776,621
39E	7782	EB	US	60	Newton	1	1999	2014	432	786	3.81%	29.20	0.60	1.00	2,762,825
39W	7783	WB	US	60	Newton	1	1999	2018	401	806	3.55%	28.43	0.60	1.00	2,495,944
40W	1029	WB	МО	34	Cape Girardeau	2	2007	2018	387	347	-0.91%	11.41	0.50	0.90	726,385
41E	1977	EB	MO	14	Christian	1	2008	2016	224	224	0.00%	11.00	0.50	1.00	449,680
41W	1978	WB	MO	14	Christian	1	2008	2017	337	305	-0.99%	10.47	0.50	1.00	643,927

APPENDIX F—IRI TIME SERIES GRAPHS

1W - IRI

2S - IRI

3E - IRI

4E - IRI

5N - IRI

5S - IRI

6N - IRI

7W - IRI

10E - IRI

9E - IRI

12E - IRI

14S - IRI

17W - IRI

19N - IRI

20S - IRI

21S - IRI

22W - IRI

26S - IRI

27N - IRI

28N - IRI

30N - IRI

32W - IRI

33W - IRI

34S - IRI

35N - IRI

36S - IRI

37N - IRI

37S - IRI

38S - IRI

39E - IRI

Year

39W - IRI

40W - IRI

41E - IRI

2017

APPENDIX G—CURRENT REPAIR NEEDS

U.ID.	Total No. of Slabs	Joint Spacing, ft	Slab Width, ft	Total Area, ft ²	Patch Area Sp-[H] PDR 3 ft x 3 ft	Patch Area, ft ² Corner Breaks FDR 3 ft x 3 ft	Patch Area, ft ² Transverse Crack FDR 6 ft x width	Patch Area, ft ² Transverse Crack FDR 6 ft x width	Total PDR Area, ft ²	Total PDR, % of Total Area	Total FDR Area, ft ²	Total FDR, % of Total Area
1W	1,677	15	12	301,860	108	0	0	0	108	0.036%	0	0.000%
2S	5,202	15	12	936,360	9	18	0	360	9	0.001%	378	0.040%
3E	2,776	15	13.8	574,632	0	0	0	0	0	0.000%	0	0.000%
4E	3,374	15	13.8	698,418	0	0	0	0	0	0.000%	0	0.000%
5N	1,226	15	12	220,680	0	0	0	180	0	0.000%	180	0.082%
5S	1,246	15	12	224,280	18	0	72	720	18	0.008%	792	0.353%
6N	479	15	12	86,220	0	0	0	0	0	0.000%	0	0.000%
6S	519	15	12	93,420	0	0	0	0	0	0.000%	0	0.000%
7E	NA	NA	NA	NA	0	0	NA	NA	NA	NA	NA	NA
7W	NA	NA	NA	NA	0	0	NA	NA	NA	NA	NA	NA
8E	1,567	15	12	282,060	0	0	0	0	0	0.000%	0	0.000%
8W	1,559	15	12	280,620	0	0	0	0	0	0.000%	0	0.000%
9E	3,203	15	12	576,540	27	27	144	10080	27	0.005%	10251	1.778%
10E	3,817	15	14	801,570	0	0	84	0	0	0.000%	84	0.010%
11E	2,252	15	14	472,920	126	153	0	840	126	0.027%	993	0.210%
12E	1,346	15	14	282,660	81	90	0	1260	81	0.029%	1350	0.478%
13W	1,113	15	13.8	230,391	9	0	248	0	9	0.004%	248.4	0.108%
14S	4,044	15	14	849,240	144	18	168	840	144	0.017%	1026	0.121%
15E	3,106	15	12	559,080	0	0	0	0	0	0.000%	0	0.000%
15W	3,102	15	12	558,360	0	0	0	0	0	0.000%	0	0.000%
16N	3,095	15	13	603,525	9	0	0	0	9	0.001%	0	0.000%
17W	3,035	15	12	546,300	99	9	72	3600	99	0.018%	3681	0.674%
18N	703	15	13	137,085	0	0	0	0	0	0.000%	0	0.000%
19N	5,238	15	13	1,021,410	36	0	78	1950	36	0.004%	2028	0.199%
20N	2,473	15	12	445,140	27	36	0	26100	27	0.006%	26136	5.871%
20S	2,480	15	12	446,400	0	0	0	2700	0	0.000%	2700	0.605%
21N	2,804	15	12	504,720	9	9	0	0	9	0.002%	9	0.002%
21S	2,799	15	12	503,820	0	9	0	0	0	0.000%	9	0.002%
22E	1,448	15	12	260,640	9	0	0	0	9	0.003%	0	0.000%
22W	1,456	15	12	262,080	0	0	0	0	0	0.000%	0	0.000%
23W	3,080	15	12	554,400	18	0	0	0	18	0.003%	0	0.000%
24N	1,144	15	12	205,920	0	0	0	0	0	0.000%	0	0.000%
25N	1,065	15	12	191,700	0	0	0	0	0	0.000%	0	0.000%

Table G-1. UBOL current patching needs.

U.ID.	Total No. of Slabs	Joint Spacing, ft	Slab Width, ft	Total Area, ft ²	Patch Area Sp-[H] PDR 3 ft x 3 ft	Patch Area, ft ² Corner Breaks FDR 3 ft x 3 ft	Patch Area, ft ² Transverse Crack FDR 6 ft x width	Patch Area, ft ² Transverse Crack FDR 6 ft x width	Total PDR Area, ft ²	Total PDR, % of Total Area	Total FDR Area, ft ²	Total FDR, % of Total Area
25S	1,061	15	12	190,980	0	0	0	0	0	0.000%	0	0.000%
26N	NA	NA	NA	NA	0	0	NA	NA	NA	NA	NA	NA
26S	NA	NA	NA	NA	0	0	NA	NA	NA	NA	NA	NA

U.ID.	Total No. of Slabs	Joint Spacing, ft	Slab Width, ft	Total Area, ft ²	FDR Area Full-Panel, ft ²	Total FDR Area, ft ²	Total FDR, % of Total Area
278	4,895	6	6	176,220	72	72	0.041%
27N	NA	NA	NA	NA	NA	NA	NA
28S	22,099	6	6	795,564	1,584	1,584	0.189%
28N	NA	NA	NA	NA	NA	NA	NA
29E	12,708	6	6	457,488	2,592	2,592	0.567%
30N	12,866	6	6	463,176	180	180	0.039%
305	NA	NA	NA	NA	NA	NA	NA
31S	NA	NA	NA	NA	NA	NA	NA
32W	141	6	6	5,076	0	0	0
33E	486	6	6	17,496	0	0	0
33W	624	6	6	22,464	36	36	0.160%
338	141	6	6	5,076	0	0	0.000%
33N	NA	NA	NA	NA	NA	NA	NA
34E	NA	NA	NA	NA	NA	NA	NA
34W	159	6	6	5,724	36	36	0.629%
34S	NA	NA	NA	NA	NA	NA	NA
34N	141	6	6	5,076	36	36	0.709%
35N	11,680	7.5	6	525,600	720	720	0.137%
358	12,690	7.5	6	571,050	936	936	0.160%

Table G-2. BBOL current patching needs.

U.ID.	Total No. of Slabs	Joint Spacing, ft	Slab Width, ft	Total Area, ft ²	FDR Area Full-Panel, ft ²	Total FDR Area, ft ²	Total FDR, % of Total Area
36S	NA	4	4	NA	NA	NA	NA
36N	285	4	4	4,562	16	16	0.351%
378	238	4	4	3,802	16	16	0.421%
37N	NA	4	4	NA	NA	NA	NA
38N	792	4	4	12,672	0	0	0.000%
38S	792	4	4	12,672	16	16	0.126%
39W	1,604	4	4	25,661	256	256	0.998%
39E	NA	4	4	NA	NA	NA	NA
40W	NA	4	4	NA	NA	NA	NA
41W	198	4	4	3,168	0	0	0.000%
41E	NA	4	4	NA	NA	NA	NA

Table G-3. BOL current patching needs.

APPENDIX H—DATA DICTIONARY

DATA DICTIONARY

Version 7/14/2020

Data Sheet	Design Revised Log. mi
U.ID.	Unique ID, unique consecutive number identifier for each project followed with a letter I to specify the direction (N-North, S-South, E-East, W-West).
No	Number associated with the original project listing given by MoDOT.
Twid	Travelway ID, from MoDOT's TMS database.
Dir	Direction of travel.
Desg	Road designation, from MoDOT's TMS database (Interstate, US Numbered Routes, Missouri Numbered Routes).
Route	Route number, from MoDOT's TMS database.
County	County name.
Overlay Type	Overlay type, UBOL – Unbounded Overlay, BBOL – Big Block Overlay, BOL – Bonded Overlay.
Construction Date	Date of project construction.
Job.No	Job number associated with MoDOT's TMS database.
Contract.ID	Contract number associated with MoDOT's TMS database.
Original Log.mi Start	Original Log mile starting point associated with the original project listing.
Original Log.mi End	Original Log mile endpoint associated with the original project listing.
Revised Log.mi Start	Revised Log mile starting point.
Revised Log.mi End	Revised Log mile endpoint.
Year of Log.mi	Year of the data on the ARAN explorer used to extract the "Revised Log.mi Start" and the "Revised Log.mi End".
Number of Lanes	Number of lanes associated with each project.

Data Sheet	Design Revised Log. mi				
Start Station	Beginning station for each project extracted from plans and/or 2-AA sheets.				
End Station	Ending station for each project extracted from plans and/or 2-AA sheets.				
Traffic Metric	Type of traffic metric obtained from project plans and/or 2-AA sheets.				
Year0	Initial year associated with the traffic metric.				
Traffic at Year0	Traffic volume in the initial year.				
Yearn	End year associated with the traffic metric.				
Traffic at Yearn	Traffic volume at the end year.				
DHV	Design Hourly Volume, %.				
Percent Trucks	Percent of trucks (FHWA class 4 to 13) out of total traffic volume, %.				
Design Speed	Design speed in miles per hour, or kilometers per hour for those projects constructed following metric units.				
Directional	Directional traffic volume, %.				
Joint Spacing	Longitudinal joint spacing, ft.				
Slab Width	Typical slab width, ft.				
Slab Thickness	Slab thickness, in.				
Sealed Joints	YES or NO field, depending on the year of construction. Projects constructed before 2006 were designated as YES, all others as NO.				
Dowels	Dowel diameter, in. Based on MoDOT's Standard Plan 502.05 (MoDOT 2020), projects with a slab thickness of 7 in or more were recorded as having dowels.				
	Type of interlayer pavement:HMA – Hot Mix Asphalt.				
Interlayer	• ACP – Asphalt Concrete Pavement.				
туре	• NRPCCP – Non-reinforced Portland Cement Concrete Pavement.				
	• RPCCP – Reinforced Portland Cement Concrete Pavement.				

Data Sheet	Design Revised Log. mi
Interlayer	Thickness of the interlayer in inches. Projects with a variable thickness
Thickness	interlayer were assigned as 'VAR'.
The days	Type of underlying pavement:HMA – Hot Mix Asphalt.
Dinder	• ACP – Asphalt Concrete Pavement.
1 avennenn	NRPCCP – Non-reinforced Portland Cement Concrete Pavement.
	• RPCCP – Reinforced Portland Cement Concrete Pavement.
Under Pavement Thickness	Thickness of the underlying pavement in inches. Projects with a variable thickness underlying pavement were assigned as 'VAR'.
Base Type	Material type of the base layer, as shown in project plans or 2-AA sheets.
Base Thickness	Thickness of the base layer in inches.
	Type of Shoulder:PCC – Portland Cement Concrete.
Shoulder Type	• A1, A2, A3 – Standard shoulder design as per MoDOT standard plan 401.00C.
	• Agg Shldr – Aggregate Shoulder.

• HMA – Hot Mix Asphalt.

Data Sheet	Strength PWL, Thickness PWL, and Air Content PWL PWL definitions are based out of MoDOT's General Specifications 502.10.4 (MoDOT 2019b)
U.ID.	Unique ID, unique consecutive number identifier for each project followed with a letter I to specify the direction (N-North, S-South, E-East, W-West).
Strength	Compressive strength measured from field cores, lbf/in ² .
Thickness	In-place thickness measured from field cores, in.
Design Thickness	Thickness value as specified by the project plans, in.
Delta Thickness	Thickness difference between design thickness and in-place thickness.
Air Content	In-place air content measured from field cores, %.
USL	Upper Specification Limit.
LSL	Lower Specification Limit.
\mathbf{Q}_{U}	Upper-Quality Index.
Q_L	Lower-Quality Index.
PWL	Percent Within Limits.
PWLu	Upper PWL.

PWL_L Lower PWL.

Data Sheet	Faulting, IRI, AADT, and Traffic Analysis The following items refer to variables coming from MoDOT's TMS database, and the ESAL analysis derived from it.					
U.ID.	Unique ID, unique consecutive number identifier for each project followed with a letter I to specify the direction (N-North, S-South, E-East, W-West).					
Faulting	Elevation difference on the transverse joint between consecutive slabs (in).					
IRI	International Roughness Index, in/mi.					
AADT	Annual Average Daily Traffic.					
AADTT	Annual Average Daily Truck Traffic.					
Growth Rate	Calculated average annual growth rate between Year ₀ and Year _n , %.					
Growth Factor (GF)	Compounded traffic growth factor as a function of growth rate and the number of years. $GF = ((1+Growth Rate) *(2018-Year of Construction+1)-1)/(Growth Rate)$					
	Truck Factor with the following assumed values:					
Truck Factor	• 0.75 – Interstates.					
(TF)	• $0.60 - \text{US routes.}$					
	• $0.50 - \text{All other routes.}$					
	Percent of total traffic flowing through the design lane; assumed values:					
	• 1.00 – 1-lane per direction.					
	• 0.90 – 2-lane per direction.					
Factor (DL)	• 0.70 – 3-lane per direction.					
```	• 0.60 – 4-lane per direction.					
	• 0.50 – More than 4 lanes per direction.					

ESAL Equivalent Single Axle Load. ESAL= (AADTT at Year₀) *365*GF*TF*DL

Data Sheet	UBOL Cracking Summary, UBOL Percentages, UBOL Crack Counts, UBOL Repair Needs, BBOL Cracking Summary, BBOL Percentages, BBOL Crack Counts, BBOL Repair Needs, BOL Cracking Summary, BOL Percentages, BOL Crack Counts, and BOL Repair Needs. Distress identification followed FHWA's Distress Identification Manual for the Long-Term Pavement Performance Program (FHWA, 2014)
U.ID.	Unique ID, unique consecutive number identifier for each project followed with a letter I to specify the direction (N-North, S-South, E-East, W-West).
	Lane surveyed for each project:
Lane	• DL – Driving Lane.
Surveyed	• CL – Center Lane.
	• PL – Passing Lane.
PASER Score	0-10 condition score based on the University of Wisconsin PASER Manual—Concrete Roads (Walker 2015).
Total No of Slabs	Estimated total number of slabs between the log.mi limits of each project. Calculated using the length of each project and the typical size of the slabs.
Total Area	Estimated total surface area between the log.mi limits of each project. Calculated using the length of each project and the typical lane width.
Percentage of Cracked Slabs	Percentage out of the total number of slabs that are cracked. Cracking types accounted for this metric include shattered slabs, longitudinal and transverse cracking, and corner breaks.
Percentage of Patched Slabs	Percentage out of the total number of slabs that are patched. Patching types included are longitudinal and transverse joints, mid-panel, and full panel.
Percentage of Patched Area	Percentage out of the total area that is patched. Patching types included are longitudinal and transverse joints, mid-panel, and full panel.
Map Cracking	If present, map cracking was recorded with a general comment.
Pop-Outs	Pop-out recorded as the number of slabs affected, with no severity levels.
Scaling	Scaling recorded as the number of slabs affected, with no severity levels.
Potholes	Potholes recorded as the number of slabs affected, with no severity levels.
Wear & Polish	If present, wear & polish was recorded with a general comment.

Data Sheet	UBOL Cracking Summary, UBOL Percentages, UBOL Crack Counts, UBOL Repair Needs, BBOL Cracking Summary, BBOL Percentages, BBOL Crack Counts, BBOL Repair Needs, BOL Cracking Summary, BOL Percentages, BOL Crack Counts, and BOL Repair Needs. Distress identification followed FHWA's Distress Identification Manual for the Long-Term Pavement Performance Program (FHWA, 2014)
Joint Seal Condition	Joint seal condition was assessed based on the overall observed condition and registered as general good/fair/poor comment.
D-Cr	Durability cracking, as defined by the LTPP Distress Identification Manual.
Shattered Slab	Slab has broken into 3 or more pieces and with interconnected crack. For BBOL projects, this can apply to either the left- or right-side panels. For BOL projects, this can apply to the left-, center-, or right-side panels.
Sp-[M] Tr-Jt, WP	Medium severity spalling on transverse joints on the wheel-path. For BOL projects there is no wheel-path distinction.
Sp-[M] Tr-Jt, No-WP	Medium severity spalling on transverse joints, not on the wheel-path.
Sp-[M] Long-Jt	Medium severity spalling on longitudinal joints.
Sp-[M] Corner	Medium severity spalling on corners.
Sp-[H] Tr-Jt, WP	High severity spalling on transverse joints on the wheel-path. For BOL projects, there is no wheel-path distinction.
Sp-[H] Tr-Jt, No-WP	High severity spalling on transverse joints, not on the wheel-path.
Sp-[H] Long- Jt	High severity spalling on longitudinal joints.
Sp-[H] Corner	High severity spalling on corners.
Tr-Cr-[L] Bottom	Low severity transverse crack on the bottom third of the slab. For BBOL projects, this can apply to either the left- or right-side panels. For BOL projects, this can apply to the left-, center-, or right-side panels.
Tr-Cr-[L] Center	Low severity transverse crack on the middle third of the slab. For BBOL projects, this can apply to either the left- or right-side panels. For BOL projects, this can apply to the left-, center-, or right-side panels.

Data Sheet	UBOL Cracking Summary, UBOL Percentages, UBOL Crack Counts, UBOL Repair Needs, BBOL Cracking Summary, BBOL Percentages, BBOL Crack Counts, BBOL Repair Needs, BOL Cracking Summary, BOL Percentages, BOL Crack Counts, and BOL Repair Needs. Distress identification followed FHWA's Distress Identification Manual for the Long-Term Pavement Performance Program (FHWA, 2014)
Tr-Cr-[L] Top	Low severity transverse crack on the top third of the slab. For BBOL projects, this can apply to either the left- or right-side panels. For BOL projects, this can apply to the left-, center-, or right-side panels.
Tr-Cr-[L] Bottom-Jt	Low severity transverse crack within 1 ft of the bottom transverse joint. Applicable only to UBOL projects.
Tr-Cr-[L] Top-Jt	Low severity transverse crack within 1 ft of the top transverse joint. Applicable only to UBOL projects.
Tr-Cr-[M] Bottom	Medium severity transverse crack on the bottom third of the slab. For BBOL projects, this can apply to either the left- or right-side panels. For BOL projects, this can apply to the left-, center-, or right-side panels.
Tr-Cr-[M] Center	Medium severity transverse crack on the middle third of the slab. For BBOL projects, this can apply to either the left- or right-side panels. For BOL projects, this can apply to the left-, center-, or right-side panels.
Tr-Cr-[M] Top	Medium severity transverse crack on the top third of the slab. For BBOL projects, this can apply to either the left- or right-side panels. For BOL projects, this can apply to the left-, center-, or right-side panels.
Tr-Cr-[M] Bottom-Jt	Medium severity transverse crack within 1 ft of the bottom transverse joint. Applicable only to UBOL projects.
Tr-Cr-[M] Top-Jt	Medium severity transverse crack within 1 ft of the top transverse joint. Applicable only to UBOL projects.
Tr-Cr-[H] Bottom	High severity transverse crack on the bottom third of the slab. For BBOL projects, this can apply to either the left- or right-side panels. For BOL projects, this can apply to the left-, center-, or right-side panels.
Tr-Cr-[H] Center	High severity transverse crack on the middle third of the slab. For BBOL projects, this can apply to either the left- or right-side panels. For BOL projects, this can apply to the left-, center-, or right-side panels.
Tr-Cr-[H] Top	High severity transverse crack on the top third of the slab. For BBOL projects, this can apply to either the left- or right-side panels. For BOL projects, this can apply to the left-, center-, or right-side panels.
Data Sheet	UBOL Cracking Summary, UBOL Percentages, UBOL Crack Counts, UBOL Repair Needs, BBOL Cracking Summary, BBOL Percentages, BBOL Crack Counts, BBOL Repair Needs, BOL Cracking Summary, BOL Percentages, BOL Crack Counts, and BOL Repair Needs. Distress identification followed FHWA's Distress Identification Manual for the Long-Term Pavement Performance Program (FHWA, 2014)
------------------------	-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Tr-Cr-[H] Bottom-Jt	High severity transverse crack within 1 ft of the bottom transverse joint. Applicable only to UBOL projects.
Tr-Cr-[H] Top-Jt	High severity transverse crack within 1 ft of the top transverse joint. Applicable only to UBOL projects.
Lg-Cr-[L] Left	Low severity longitudinal crack on the left third of the slab. For BBOL projects, this can apply to either the left- or right-side panels. For BOL projects, there is no distinction regarding the location of longitudinal cracks within the slab. For both BBOL and BOL projects, the number of consecutive slabs showing longitudinal cracks was recorded by adding a 1-6 numbering, each number represents the number of consecutive slabs affected by longitudinal cracks.
Lg-Cr-[L] Center	Low severity longitudinal crack on the middle third of the slab. For BBOL projects, this can apply to either the left- or right-side panels. For BOL projects, there is no distinction regarding the location of longitudinal cracks within the slab. For both BBOL and BOL projects, the number of consecutive slabs showing longitudinal cracks was recorded by adding a 1-6 numbering, each number represents the number of consecutive slabs affected by longitudinal cracks.
Lg-Cr-[L] Right	Low severity longitudinal crack on the right third of the slab. For BBOL projects, this can apply to either the left- or right-side panels. For BOL projects, there is no distinction regarding the location of longitudinal cracks within the slab. For both BBOL and BOL projects, the number of consecutive slabs showing longitudinal cracks was recorded by adding a 1-6 numbering, each number represents the number of consecutive slabs affected by longitudinal cracks.
Lg-Cr-[L] Left-Jt	Low severity longitudinal crack within 1 ft of the left longitudinal joint. Applicable only to UBOL projects.
Lg-Cr-[L] Right-Jt	Low severity longitudinal crack within 1 ft of the right longitudinal joint. Applicable only to UBOL projects.

	UBOL Cracking Summary, UBOL Percentages, UBOL Crack Counts,
Data Shoot	UBOL Repair Needs, BBOL Cracking Summary, BBOL Percentages,
	BBOL Crack Counts, BBOL Repair Needs, BOL Cracking Summary,
Data Sheet	BOL Percentages, BOL Crack Counts, and BOL Repair Needs.
	Distress identification followed FHWA's Distress Identification Manual for
	the Long-Term Pavement Performance Program (FHWA, 2014)
Lg-Cr-[M] Left	Medium severity longitudinal crack on the left third of the slab. For BBOL projects, this can apply to either the left- or right-side panels. For BOL projects, there is no distinction regarding the location of longitudinal cracks within the slab. For both BBOL and BOL projects, the number of consecutive slabs showing longitudinal cracks was recorded by adding a 1-6 numbering, each number represents the number of consecutive slabs affected by longitudinal cracks.
Lg-Cr-[M] Center	Medium severity longitudinal crack on the middle third of the slab. For BBOL projects, this can apply to either the left- or right-side panels. For BOL projects, there is no distinction regarding the location of longitudinal cracks within the slab. For both BBOL and BOL projects, the number of consecutive slabs showing longitudinal cracks was recorded by adding a 1-6 numbering, each number represents the number of consecutive slabs affected by longitudinal cracks.
Lg-Cr-[M] Right	Medium severity longitudinal crack on the right third of the slab. For BBOL projects, this can apply to either the left- or right-side panels. For BOL projects, there is no distinction regarding the location of longitudinal cracks within the slab. For both BBOL and BOL projects, the number of consecutive slabs showing longitudinal cracks was recorded by adding a 1-6 numbering, each number represents the number of consecutive slabs affected by longitudinal cracks.
Lg-Cr-[M] Left-Jt	Medium severity longitudinal crack within 1 ft of the left longitudinal joint. Applicable only to UBOL projects.
Lg-Cr-[M] Right-Jt	Medium severity longitudinal crack within 1 ft of the right longitudinal joint. Applicable only to UBOL projects.
Lg-Cr-[H] Left	High severity longitudinal crack on the left third of the slab. For BBOL projects, this can apply to either the left- or right-side panels. For BOL projects, there is no distinction regarding the location of longitudinal cracks within the slab. For both BBOL and BOL projects, the number of consecutive slabs showing longitudinal cracks was recorded by adding a 1-6 numbering, each number represents the number of consecutive slabs affected by longitudinal cracks.

Data Sheet	UBOL Cracking Summary, UBOL Percentages, UBOL Crack Counts, UBOL Repair Needs, BBOL Cracking Summary, BBOL Percentages, BBOL Crack Counts, BBOL Repair Needs, BOL Cracking Summary, BOL Percentages, BOL Crack Counts, and BOL Repair Needs. Distress identification followed FHWA's Distress Identification Manual for the Long-Term Pavement Performance Program (FHWA, 2014)
Lg-Cr-[H] Center	High severity longitudinal crack on the middle third of the slab. For BBOL projects, this can apply to either the left- or right-side panels. For BOL projects, there is no distinction regarding the location of longitudinal cracks within the slab. For both BBOL and BOL projects, the number of consecutive slabs showing longitudinal cracks was recorded by adding a 1-6 numbering, each number represents the number of consecutive slabs affected by longitudinal cracks.
Lg-Cr-[H] Right	High severity longitudinal crack on the right third of the slab. For BBOL projects, this can apply to either the left- or right-side panels. For BOL projects, there is no distinction regarding the location of longitudinal cracks within the slab. For both BBOL and BOL projects, the number of consecutive slabs showing longitudinal cracks was recorded by adding a 1-6 numbering, each number represents the number of consecutive slabs affected by longitudinal cracks.
Lg-Cr-[H] Left-Jt	High severity longitudinal crack within 1 ft of the left longitudinal joint. Applicable only to UBOL projects.
Lg-Cr-[H] Right-Jt	High severity longitudinal crack within 1 ft of the right longitudinal joint. Applicable only to UBOL projects.
Cor-Cr-[L] Top-Right	Low severity corner break on the top-right corner of the slab. For BBOL and BOL projects, the survey also kept track of whether a corner break was 'isolated' or as part of a 'system', denoted by the abbreviation 'sys'. An isolated corner break does not connect to or is associated with, any adjacent longitudinal or transverse crack, or corner break.
Cor-Cr-[L] Top-Left	Low severity corner break on the top-left corner of the slab. For BBOL and BOL projects, the survey also kept track of whether a corner break was 'isolated' or as part of a 'system', denoted by the abbreviation 'sys'. An isolated corner break does not connect to or is associated with, any adjacent longitudinal or transverse crack, or corner break.
Cor-Cr-[L] Bottom-Left	Low severity corner break on the bottom-left corner of the slab. For BBOL and BOL projects, the survey also kept track of whether a corner break was 'isolated' or as part of a 'system', denoted by the abbreviation 'sys'. An isolated corner break does not connect to or is associated with, any adjacent longitudinal or transverse crack, or corner break.

Data Sheet	UBOL Cracking Summary, UBOL Percentages, UBOL Crack Counts, UBOL Repair Needs, BBOL Cracking Summary, BBOL Percentages, BBOL Crack Counts, BBOL Repair Needs, BOL Cracking Summary, BOL Percentages, BOL Crack Counts, and BOL Repair Needs. Distress identification followed FHWA's Distress Identification Manual for the Long-Term Payement Performance Program (FHWA, 2014)
Cor-Cr-[L] Bottom- Right	Low severity corner break on the bottom-right corner of the slab. For BBOL and BOL projects, the survey also kept track of whether a corner break was 'isolated' or as part of a 'system', denoted by the abbreviation 'sys'. An isolated corner break does not connect to or is associated with, any adjacent longitudinal or transverse crack, or corner break.
Cor-Cr-[M] Top-Right	Medium severity corner break on the top-right corner of the slab. For BBOL and BOL projects, the survey also kept track of whether a corner break was 'isolated' or as part of a 'system', denoted by the abbreviation 'sys'. An isolated corner break does not connect to or is associated with, any adjacent longitudinal or transverse crack, or corner break.
Cor-Cr-[M] Top-Left	Medium severity corner break on the top-left corner of the slab. For BBOL and BOL projects, the survey also kept track of whether a corner break was 'isolated' or as part of a 'system', denoted by the abbreviation 'sys'. An isolated corner break does not connect to or is associated with, any adjacent longitudinal or transverse crack, or corner break.
Cor-Cr-[M] Bottom-Left	Medium severity corner break on the bottom-left corner of the slab. For BBOL and BOL projects, the survey also kept track of whether a corner break was 'isolated' or as part of a 'system', denoted by the abbreviation 'sys'. An isolated corner break does not connect to or is associated with, any adjacent longitudinal or transverse crack, or corner break.
Cor-Cr-[M] Bottom- Right	Medium severity corner break on the bottom-right corner of the slab. For BBOL and BOL projects, the survey also kept track of whether a corner break was 'isolated' or as part of a 'system', denoted by the abbreviation 'sys'. An isolated corner break does not connect to or is associated with, any adjacent longitudinal or transverse crack, or corner break.
Cor-Cr-[H] Top-Right	High severity corner break on the top-right corner of the slab. For BBOL and BOL projects, the survey also kept track of whether a corner break was 'isolated' or as part of a 'system', denoted by the abbreviation 'sys'. An isolated corner break does not connect to or is associated with, any adjacent longitudinal or transverse crack, or corner break.

Data Sheet	UBOL Cracking Summary, UBOL Percentages, UBOL Crack Counts, UBOL Repair Needs, BBOL Cracking Summary, BBOL Percentages, BBOL Crack Counts, BBOL Repair Needs, BOL Cracking Summary, BOL Percentages, BOL Crack Counts, and BOL Repair Needs. Distress identification followed FHWA's Distress Identification Manual for the Long-Term Pavement Performance Program (FHWA, 2014)
Cor-Cr-[H] Top-Left	High severity corner break on the top-left corner of the slab. For BBOL and BOL projects, the survey also kept track of whether a corner break was 'isolated' or as part of a 'system', denoted by the abbreviation 'sys'. An isolated corner break does not connect to or is associated with, any adjacent longitudinal or transverse crack, or corner break.
Cor-Cr-[H] Bottom-Left	High severity corner break on the bottom-left corner of the slab. For BBOL and BOL projects, the survey also kept track of whether a corner break was 'isolated' or as part of a 'system', denoted by the abbreviation 'sys'. An isolated corner break does not connect to or is associated with, any adjacent longitudinal or transverse crack, or corner break.
Cor-Cr-[H] Bottom- Right	High severity corner break on the bottom-right corner of the slab. For BBOL and BOL projects, the survey also kept track of whether a corner break was 'isolated' or as part of a 'system', denoted by the abbreviation 'sys'. An isolated corner break does not connect to or is associated with, any adjacent longitudinal or transverse crack, or corner break.
Diagonal Cracks	Diagonal cracking is not an LTPP standard distress, but rather a distress type defined specifically for this project. A diagonal crack is a hybrid between a corner break and a longitudinal crack, it is identified as a longitudinal crack that starts at least 3 ft apart from a corner of the slab, and, instead of progressing longitudinally, it wanders into one of the longitudinal joints. It is similar to a corner break except that it does not generally intersect both joints at a 45-degree angle.
Dia-Cr-[L] Top-Right	Low severity diagonal crack on the top-right quadrant of the slab. Applicable only to UBOL projects.
Dia-Cr-[L] Top-Left	Low severity diagonal crack on the top-left quadrant of the slab. Applicable only to UBOL projects.
Dia-Cr-[L] Bottom-Left	Low severity diagonal crack on the bottom-left quadrant of the slab. Applicable only to UBOL projects.
Dia-Cr-[L] Bottom- Right	Low severity diagonal crack on the bottom-right quadrant of the slab. Applicable only to UBOL projects.
Dia-Cr-[M] Top-Right	Medium severity diagonal crack on the top-right quadrant of the slab. Applicable only to UBOL projects.

Data Sheet	UBOL Cracking Summary, UBOL Percentages, UBOL Crack Counts, UBOL Repair Needs, BBOL Cracking Summary, BBOL Percentages, BBOL Crack Counts, BBOL Repair Needs, BOL Cracking Summary, BOL Percentages, BOL Crack Counts, and BOL Repair Needs. Distress identification followed FHWA's Distress Identification Manual for the Long-Term Pavement Performance Program (FHWA, 2014)
Dia-Cr-[M] Top-Left	Medium severity diagonal crack on the top-left quadrant of the slab. Applicable only to UBOL projects.
Dia-Cr-[M] Bottom-Left	Medium severity diagonal crack on the bottom-left quadrant of the slab. Applicable only to UBOL projects.
Dia-Cr-[M] Bottom- Right	Medium severity diagonal crack on the bottom-right quadrant of the slab. Applicable only to UBOL projects.
Dia-Cr-[H] Top-Right	High severity diagonal crack on the top-right quadrant of the slab. Applicable only to UBOL projects.
Dia-Cr-[H] Top-Left	High severity diagonal crack on the top-left quadrant of the slab. Applicable only to UBOL projects.
Dia-Cr-[H] Bottom-Left	High severity diagonal crack on the bottom-left quadrant of the slab. Applicable only to UBOL projects.
Dia-Cr-[H] Bottom- Right	High severity diagonal crack on the bottom-right quadrant of the slab. Applicable only to UBOL projects.
Patch-[L]	Low severity patch on a longitudinal joint. Dimensions assumptions:
Lg-Jt	• UBOL 6 ft x 15 ft.
Patch-[L] Tr-	Low severity patch on a transverse joint. Dimensions assumptions:
Jt	• UBOL 12 ft x 6 ft.
Patch-[L] Mid-Panel	Low severity patch in the middle of the slab transversely oriented. Dimensions assumptions:
	• UBOL 12 ft x 6 ft.
Patch-[L] Corner	Low severity patch on a corner of the slab. Dimensions assumptions:
	• UBOL 3 ft x 3 ft.

Data Sheet	UBOL Cracking Summary, UBOL Percentages, UBOL Crack Counts, UBOL Repair Needs, BBOL Cracking Summary, BBOL Percentages, BBOL Crack Counts, BBOL Repair Needs, BOL Cracking Summary, BOL Percentages, BOL Crack Counts, and BOL Repair Needs. Distress identification followed FHWA's Distress Identification Manual for the Long-Term Pavement Performance Program (FHWA, 2014)
	Low severity full-panel patch. Applicable to all project types. Dimensions assumptions:
Patch-[L] Full-Panel	• UBOL 12 ft x 15 ft.
	<ul> <li>BBOL 6 ft x 6 ft.</li> <li>DOL 4 ft x 4 ft.</li> </ul>
	• BOL 4 It X 4 It.
Patch-[M] Lg-Jt	<ul> <li>UBOL 6 ft x 15 ft.</li> </ul>
Dotoh [M]	Medium severity patch on a transverse joint. Dimensions assumptions:
Tr-Jt	• UBOL 12 ft x 6 ft.
Patch-[M]	Medium severity patch in the middle of the slab transversely oriented. Dimensions assumptions:
Mid-Panel	• UBOL 12 ft x 6 ft.
Patch-[M]	Medium severity patch on a corner of the slab. Dimensions assumptions:
Corner	• UBOL 3 ft x 3 ft.
	Medium severity full-panel patch. Applicable to all project types. Dimensions assumptions:
Patch-[M] Full-Panel	• UBOL 12 ft x 15 ft.
	<ul> <li>BBOL 6 ft x 6 ft.</li> <li>DOL 4 ft = 4 ft.</li> </ul>
	• BOL 4 ft x 4 ft.
Patch-[M] Lg-Jt	High severity patch on a longitudinal joint. Dimensions assumptions:
	• UBOL 6 ft x 15 ft.
Patch-[M] Tr-Jt	High severity patch on a transverse joint. Dimensions assumptions:
	• UBOL 12 ft x 6 ft.

Data Sheet	UBOL Cracking Summary, UBOL Percentages, UBOL Crack Counts, UBOL Repair Needs, BBOL Cracking Summary, BBOL Percentages, BBOL Crack Counts, BBOL Repair Needs, BOL Cracking Summary, BOL Percentages, BOL Crack Counts, and BOL Repair Needs. Distress identification followed FHWA's Distress Identification Manual for the Long-Term Pavement Performance Program (FHWA, 2014)
Patch-[M] Mid-Panel	High severity patch in the middle of the slab transversely oriented. Dimensions assumptions:
	• UBOL 12 ft x 6 ft.
Patch-[M] Corner	High severity patch on a corner of the slab. Dimensions assumptions:
	• UBOL 3 ft x 3 ft.
Patch-[M] Full-Panel	High severity full-panel patch. Applicable to all project types. Dimensions assumptions:
	• UBOL 12 ft x 15 ft.
	• BBOL 6 ft x 6 ft.
	• BOL 4 ft x 4 ft.
Joint Spacing	Longitudinal joint spacing, ft.
Slab Width	Typical slab width, ft.
PDR Area Sp-[H]	Partial-Depth Repair area derived from high-severity spalling, ft ² . Assumes a 3 ft by 3 ft patch size. Applicable only to UBOL projects.
FDR Area Cor-Cr-[H]	Full-Depth Repair area derived from high-severity corner breaks, ft ² . Assumes a 3 ft by 3 ft patch size. Applicable only to UBOL projects.
FDR Area Tr-Cr-[H]	Full-Depth Repair area derived from high-severity transverse cracks, ft ² . Assumes a patch size that is 6 ft long and a width of the full width of the slab. Applicable only to UBOL projects.

Data Sheet	UBOL Cracking Summary, UBOL Percentages, UBOL Crack Counts, UBOL Repair Needs, BBOL Cracking Summary, BBOL Percentages, BBOL Crack Counts, BBOL Repair Needs, BOL Cracking Summary, BOL Percentages, BOL Crack Counts, and BOL Repair Needs. Distress identification followed FHWA's Distress Identification Manual for the Long-Term Pavement Performance Program (FHWA, 2014)
	Full-Depth Repair area, ft ² . Assumes a patch size equal to full length and width of the original slab. The distresses considered for full-panel patches include:
	• UBOL shattered slabs and high-severity permanent patches.
FDR Area Full-Panel	• BBOL shattered slabs, high-severity spalling, high-severity transverse and longitudinal cracks, high-severity corner breaks, and high-severity permanent patches.
	• BOL shattered slabs, high-severity spalling, high-severity transverse and longitudinal cracks, high-severity corner breaks, and high-severity permanent patches.
Total PDR Area	Total sum of Partial-Depth Repair area, ft ² . Applicable only to UBOL projects.
Total PDR, % of Total Area	Total sum of Partial-Depth Repair area as percentage of total area, %. Applicable only to UBOL projects.
Total FDR Area, ft ²	Total sum of Full-Depth Repair area, ft ² .
Total FDR, % of Total Area	Total sum of Full-Depth Repair area as percentage of total area, %.